
10.2.2019

1

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Programmable Web Project

Exercise 2

API Design

1

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Learning outcomes (I)

•Students understand what a Web API is and
learn different Web API architectures.

•Students understand the concept of
hypermedia and how it can be used to build
Web APIs.

•Students are able to design and implement
a Web API following REST architectural style
principles using existing web frameworks.

2

1

2

10.2.2019

2

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Learning outcomes (II)

•Students are able to write unit and functional
tests to inspect their APIS.

•Students are able to document their Web
APIs using adequate software tools.

•Students are able to implement simple
software applications that make use of the
APIs.

3

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

HYPERMEDIA

4

3

4

10.2.2019

3

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

ROA properties

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness

5

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Why hypermedia?

What is hypermedia?

"When I say hypertext, I mean the simultaneous

presentation of information and controls such that
the information becomes the affordance through
which the user (or automaton) obtains choices and
selects actions." - Fielding, 2008

6

5

6

10.2.2019

4

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Hypermedia

HATEOAS?
Hypermedia as the Engine of Application State

7

“A REST API should be entered with no prior knowledge
beyond the initial URI and set of standardized media types […]
From that point on, all application state transitions must be
driven by client selection of server-provided choices that are
present in the received representations […] The transitions
may be determined by the client’s knowledge of media types
and resource communication mechanisms, both of which
may be improved on-the-fly (e.g., code-on-demand).
Fielding. http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Hypermedia

HATEOAS?
Hypermedia as the Engine of Application State

8

“What needs to be done to make the REST architectural style
clear on the notion that hypertext is a constraint? In other
words, if the engine of application state (and hence the API) is
not being driven by hypertext, then it cannot be RESTful and
cannot be a REST API”
Fielding. http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

7

8

10.2.2019

5

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Hypermedia

9

Hypermedia As The Engine Of Application State

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

HATEOAS

•Hypermedia contains:
– Data

– Hypermedia controls
• Links

• Protocol specifications

• Ideally, client just need the entry point to the service
– The rest of the URI’s should be discovered through the hypermedia

controls
• Workflow always informed from the server

• Server informs about possible future states via hypermedia controls

– Well designed RESTful APIs permit modifying the server architecture
(e.g. URL structure) and data model without breaking the clients

10

9

10

10.2.2019

6

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Hypermedia

11

Semantic Challenge !!!!

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Hypermedia

When client receives a resource representation it needs to
understand:

–The structure
• Parse the representation

–The application semantics
• Understand the representation

–The protocol semantics
• Knowledge about future states

– How can I access it: HTTP method, request format,
expected response

12

11

12

10.2.2019

7

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Media type

•Defines the format of the document
– Some types provide also protocol and application semantics

•Types:
– General hypermedia types

– Domain specific types

– Patterns (e.g. collection)

13

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Profiles

•Defines the application vocabulary and the actions I can
perform in each state:

•A profile must define:
– Link relations:

• describing the state transition associated to hypermedia control
(protocol semantics)

• Usually implemented as ’rel’ attribute
– http://www.iana.org/assignments/link-relations/link-relations.xhtml

– Semantic descriptors:

• Describing the meaning of properties in the representation (application
semantics)

14

13

14

http://www.iana.org/assignments/link-relations/link-relations.xhtml

10.2.2019

8

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Profiles

http://tools.ietf.org/html/rfc6906

“This specification defines the 'profile' link relation type that
allows resource representations to indicate that they are
following one or more profiles. A profile is defined not to alter
the semantics of the resource representation itself, but to
allow clients to learn about additional semantics (constraints,
conventions, extensions) that are associated with the resource
representation, in addition to those defined by the media type
and possibly other mechanisms”

15

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Linking to a profile

• Using the profile Link relation:

– RFC 6906 defines a rel called profile

– Can be used in any rel attribute:

• links (Siren or Collection+Json);

• link defined in HTML, HAL

• Link HTTP header.

<html>

<head>

<link href="http://microformats.org/wiki/hcard" rel="profile">

• Using the profile Media Type parameter:

– Added as parameter in the Content-Type header

Content-Type = application/collection+json;profile=http://myprofile

• Using special purpose hypermedia controls defined in some media types.

16

15

16

http://tools.ietf.org/html/rfc6906
http://myprofile/

10.2.2019

9

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

EXAMPLES

17

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

PayPal API

https://developer.paypal.com/docs/api/overview/

18

17

18

https://developer.paypal.com/docs/api/overview/

10.2.2019

10

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

PayPal API

https://developer.paypal.com/docs/api/overview/

19

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

FoxyCart

https://api.foxycart.com/docs/resources

20

19

20

https://developer.paypal.com/docs/api/overview/
https://api.foxycart.com/docs/resources

10.2.2019

11

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

HAL Browser

https://github.com/mikekelly/hal-browser
– http://haltalk.herokuapp.com/explorer/browser.html#/

– https://api-sandbox.foxycart.com/hal-browser/browser.html#/

21

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

HOW CAN I DESIGN AN API USING
HYPERMEDIA?

22

21

22

https://github.com/mikekelly/hal-browser
http://haltalk.herokuapp.com/explorer/browser.html#/
https://api-sandbox.foxycart.com/hal-browser/browser.html#/

10.2.2019

12

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

How can I design an API using
hypermedia?

1. Find a media type that best suits my needs
– If I cannot find it create your own specific domain design

2. Find a profile that best suits my needs
– A profile must define:

• Protocol semantics (if the media type does not provides it).

– Usually using rel relations

• Application semantics

– Define the semantics descriptors

– If there is no a good profile from me:
• I can create a new profile from a existing ones. I need to clarify the

subset of the existing profile I am using.

• I can create a new profile from several existing ones. I need to clarify
the subset of the existing profiles I am using

• I can create a new profile from scratch.

23

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

How can I design an API using
hypermedia?

Whatever you do be sure that you provide
1. The format of the representation (in the media type)

2. The protocol semantics (either in the media type or in the profile)

3. The application semantics (either in the media type or in the
profile)

24

23

24

10.2.2019

13

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

What type to choose

http://sookocheff.com/post/api/on-choosing-a-hypermedia-
format/

25

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

API DOCUMENTATION

26

25

26

http://sookocheff.com/post/api/on-choosing-a-hypermedia-format/

10.2.2019

14

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

WHY DOCUMENTING WEB APIS USING SPECIFIC
DOCUMENTATION FRAMEWORKS.

27

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

Swagger

http://swagger.io/

•Complete framework implementation for describing,
producing, consuming, and visualizing RESTful APIs.

•Documentation embedded directly in their source code,
preventing out-of-sync between documentation and code.

• Includes set of tools such as Swagger UI to visualize APIs,
Swagger editor to design an specification from Scratch using
YAML and Swagger Codegen to generate client/server
implementations.

28

27

28

http://swagger.io/

10.2.2019

15

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

RAML

http://raml.org/homepage

•YAML based language for describing RESTful APIS

• Include tools such as API console or HTML generator

29

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

API Blueprint (I)

•https://apiblueprint.org/

•Documentation-oriented web API description language
based on markdown language.

•API blueprint decouple elements of API to enable modularity
while encapsulating backend implementation behavior.

•API Blueprint provides tools for the whole API lifecycle. It can
be used to discuss your API with others, generate
documentation automatically, or a test suite.

30

29

30

http://raml.org/homepage
https://apiblueprint.org/

10.2.2019

16

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

API Blueprint (II)

Specification: https://apiblueprint.org/documentation/specification.html

Tutorial: https://apiblueprint.org/documentation/tutorial.html

IMPORTANT NOTATION:

• Resource Groups: List a set of related resources:
Group Questions

Resources related to questions in the API.

• Resources: Individual resource information. It is associated to a unique URI /
URI template. Uri parameters are explained in the Parameters section
Question information [/questions/{question_id}]

+ Parameters

+ question_id (number) - ID of the Question in the form of an integer

31

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

API Blueprint (III)

• Action: Defines a complete HTTP transaction as performed with the parent
resource section. An action must include at least one response. It may include
multiple responses, with different status codes.

List All Questions [GET]

• Request: HTTP request-message example payload

Add question [POST]

You may create your own question using this action.

+ question (string) - The question

+ choices (array[string]) - A collection of choices.

+ Request (application/json)

{ "question": "Favourite programming language?",

"choices": ["Swift",”Ruby”] }

32

31

32

https://apiblueprint.org/documentation/tutorial.html

10.2.2019

17

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

API Blueprint (IV)

• Response: HTTP response-message example payload

Add Question [POST]

+ Response 201 (application/json)

+ Headers

Location: /questions/1

+ Body

{ "question": "Favourite programming language?",

"choices": ["Swift",”Ruby”] }

33## Question Collection [/questions]

Programmable Web Project. Spring 2019.
Iván Sánchez Milara . Mika Oja

APIARY

https://apiary.io/

•Online API design stack that enables collaboration in
different phases of API design and implementation

– It uses API Blueprint and Swagger

•Multiple tools to enhance API generation:
– API Editor

– Mock Server

– Apiary CLI

– API inspector

– Interactive documentation

– Automated Testing

– Integrated code examples

34

33

34

