
1/20/2019

1

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web Project
Part 2: Programmable Web

Spring 2019

• Services and APIs

• Programmable Web

Iván Sánchez Milara Programmable Web Project. Spring 2019.

SERVICES AND APIS

2

1

2

1/20/2019

2

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web services (I)

• Web services are logical units with clearly defined
interfaces (API):

– what functionality they perform and

– which data formats they accept and produce

• They are application independent

– services can be used by other services and applications.

• Web service can incorporate the functionality of other
services (composite service)

Service Service Service

Application Application

Service

3

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web services (II)

•Web services are not prepared to human consumption (in
contrast to websites).

– Web services require an architectural style to provide clear and
unambiguous interaction (clearly defined interfaces), because
there’s no smart human being on the client end to keep track.

4

3

4

1/20/2019

3

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web APIs

•Application Programming Interfaces

•Defines how the service functionality is exposed by means of
one or more endpoints:

– Protocol semantics

– Application semantics

•Nowadays, web service word is in disuse => We use Web
API instead

5

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web API
6

Business Logic

Web API

PYTHON
CLIENT

HTTP Request

JAVA
CLIENT

SQL/
NoSQL

Database

BROWSER
CLIENT

HTML & CSS

Javascript A
JA

X

HTTP Request

HTTP Request

WEB API

HTTP Request

5

6

1/20/2019

4

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Website vs Web API

•Gist:
– Github tool that allows sharing code and applications

– Website at: https://gist.github.com/

– API at https://developer.github.com/v3/gists/

– Gist clients: https://gist.github.com/defunkt/370230

• For instance, Sublime Text client: https://github.com/condemil/Gist

7

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web APIs Examples.

• Flickr Web API can be used to retrieve and upload photos from/to
the Flickr sharing service. Pictures can be filtered using multiple
criteria.

https://www.flickr.com/
https://www.flickr.com/services/api/

• Blurb! is a web application that makes easy design, publish, market
and sell professional-quality books.

http://www.blurb.com/flickr

• Glimmr is a Flickr viewer for Android. It uses Flickr API to collect
data.

https://play.google.com/store/apps/details?id=com.bourke.glimmr

• Much more in http://www.programmableweb.com

8

7

8

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist
https://www.flickr.com/
https://www.flickr.com/services/api/
http://www.blurb.com/flickr
https://play.google.com/store/apps/details?id=com.bourke.glimmr
http://www.programmableweb.com/

1/20/2019

5

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Architectural styles

•RPC

•REST
– CRUD

– Hypermedia (HATEOAS)

9

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RPC-style Web APIs

•RPC: Remote procedure call
– A method or subroutine is executed in another address space,

without the programmer explicitly encoding the details of the
remote interaction.

•An RPC-style Web API accepts an envelope full of data from
its client, and sends a similar envelope back.

– The method and the scoping information are kept inside the
envelope, or on stickers applied to the envelope.

•Every RPC-style Web API defines a brand new vocabulary:
method name, method parameters

•Some examples:
– XML-RPC

– SOAP.

10

9

10

1/20/2019

6

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RPC

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

11

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation
.pdf

– Does not define an architecture but requirements for the
architecture

•Representation
– Resource-oriented: operates with resources.

• Resource: Any piece of information that
can be named. Identified generally by URL

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

– UNIFORM interface

12

11

12

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

1/20/2019

7

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST APIs

•CRUD
– Most extended approach. Majority of Web APIs nowadays

– Not follow strictly REST principles

• More on this next lecture

•Hypermedia
– Follows strictly REST principles

13

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Twitter API

14

https://developer.twitter.com/en/docs.html

13

14

1/20/2019

8

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia driven Web APIs

• Follows strictly Fielding dissertation principles.
– REST APIs must be hypertext driven:

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

• Uses Hypermedia as the Engine of the Application State
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

• Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

• Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

15

Iván Sánchez Milara Programmable Web Project. Spring 2019.

What about current Web
applications (RPC or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

– Application workflow

16

15

16

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

1/20/2019

9

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)
– Nowadays an specific client is needed per application at least

until we solve the problems derivated from the semantic
challenge

– A client can be implemented using any programming language
– Data is encapsulated and transmitted using any serialization

languages such as JSON, XML, HTML, YAML

17

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web

18

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One client

Programmable Web:
• Targeted to machines
• Heterogeneous clients

17

18

1/20/2019

10

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2018

• ROA Principles

• RESTful Web APIs

• Designing RESTful Web APIs

• Resource Oriented design vs
hypermedia driven design

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Table of contents

1. ROA
– REST

– Resources

– Properties:

• Addressability

• Uniform Interface

• Statelesness

• Connectedness

– HATEOAS

20

2. RESTful Web APIs

–RESTful and hypermedia

–Designing RESTful Web
APIs

3. Hypermedia driven APIs

19

20

1/20/2019

11

Iván Sánchez Milara Programmable Web Project. Spring 2019.

FORUM EXAMPLE

21

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Forum resource representation

22

forum

CategoryUser

Name

Description

Thread
Name

FirstName LastName Message

21

22

1/20/2019

12

Iván Sánchez Milara Programmable Web Project. Spring 2019.

INTRODUCTION TO ROA

23

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

24

23

24

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

1/20/2019

13

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST Constraints

•Client-server architecture

•Stateless

•Cacheability

•Layered system

•Code on demand

•Uniform interface

25

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST

26

https://www.youtube.com/watch?v=w5j2KwzzB-0

25

26

1/20/2019

14

Iván Sánchez Milara Programmable Web Project. Spring 2019.

ROA Introduction

•Resource Oriented Architecture (ROA)

– Architecture for creating Web APIs

– It conforms the REST design principles

– Base technologies: URLs, HTTP and Hypermedia

•Richardson and Ruby [1] call the Web services with a ROA

architecture RESTful Web services

– In the course we call them RESTful Web APIs

•RESTful Web services work in a similar way as the Web

(“Programmable Web”)

– However not necessarily for human consumption

27

Iván Sánchez Milara Programmable Web Project. Spring 2019.

ROA. Resources and manipulation

•Resource :

– Anything important enough to be referenced as a thing itself
• For example: List of the libraries of the city of Oulu, the last software version of

Windows, the relation between two friends, the result of factorizing a number

– Each resource is identified by a unique id:

• Uniform Resource Identifier (URI)

•We operate with resources representations:

• State of the resource at certain time

• Encoded in JSON, HTML or other hypermedia formats

•HTTP requests are used to manipulate the state of a resource
– URI : Identifies the resource to manipulate

http://www.forum.com/users/Nicky

– HTTP method: The action to be performed to manipulate the resource

28

Scope

27

28

1/20/2019

15

Iván Sánchez Milara Programmable Web Project. Spring 2019.

ROA pillars

29

Four properties:

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Addressability

•Exposes the interesting aspects of its data set as resources

– Each resource is exposed using its URI

– The URI can be copied, pasted and distributed

– Example:
•http://forum.com/users/user1 refers to the information of

the user of the Forum

• I can send this URI by email, and the receiver can access this
information by copying this URI into his/her browser

30

29

30

1/20/2019

16

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Addressability in WWW

•The WWW is addressable

31

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface (I)

•Every API uses the same methods with the same meanings
– Without a uniform interface, clients have to learn how each API is expected

to get and send information

•ROA uses uniform interface provided by HTTP to act over the
resource provided in the URI

32

Method Description

GET Returns the resource representation

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

31

32

1/20/2019

17

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface

• POST

– Creates a subordinate resource, that is, a resource existing as a children of
another resource

• Difference with PUT:

– POST creates new resources when the client does not know their URI

• Example: A client wants to create a new message in the forum

– The forum backend generates itself APIs for new messages. Client does not know in
advanced.

– POST HTTP request to /forum/categories/categoryName

– The server creates the message and assigns the URI, e.g.,
/forum/messages/message5

• The server sends the URI of the new resource back to the client in the HTTP
Response headers

– Appends information to the current resource state

• Example: Adding lines to a log entry

• Difference with PUT:

– POST modifies just part of the resource state

33

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface (II)

•PATCH http://tools.ietf.org/html/rfc5789

– Partial edition/modification of a resource

• Client and server must agree on a new media type for patch
documents

– RFC 6902: proposed standard patch format for JSON.

• Send a diff of the resource representation. Changes to be done to the
resource.

• Content-Type: application/json-patch+json

• [{ "op": "remove", "path": "/a/b/c" }, { "op": "add", "path": "/a/b/c",

"value": ["foo", "bar"] }, { "op": "replace", "path": "/a/b/c",

"value": 42 }]

34

33

34

http://tools.ietf.org/html/rfc5789

1/20/2019

18

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface (III)

• URI: http://forum.com/messages/msg-3

– GET: Retrieves this representation

– DELETE: Removes the message with id «msg-3» from the server

– PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderIP, and Registered
could be modified and MUST be included in the request body (The complete
representation is sent and it replaces the old one)

– POST: Add a response to the message with id «msg-3» (subordinate resource). The
body of the request should include the new message

35

<msg:Message messageID="msg-3">

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi Markkanen used to play before

he came to Edmonton Oilers? He was excellent in the Stanley Cup finals

last season! Too bad they lost...</msg:Body>

<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>

<msg:SenderIP>217.119.25.162</msg:SenderIP>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface in WWW

•Only GET and POST supported in HTML

•Rest of HTTP methods supported through Javascript

36

35

36

1/20/2019

19

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Statelessness (I). State concept.
•Resource state:

– A resource representation that is exchanged between server and
client:

• The values of information items belonging to the resource

• Links to related resources and future states of applications (including protocol information)

– Same for all the clients making simultaneous requests

–Kept in the server

•Application state:
– Snapshot of the entire system at a particular instant

• What I have done till now and what can I do in the future (application
workflow)

– Future possible application states are informed in the resource
representation sent by the server.

– Kept in the client until it can be used to create, modify or delete a
resource

37

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Statelessness (II)

•Every HTTP request happens in complete isolation
(STATELESS)

– Server never operates based on information from previous
requests, does not store application state

• Eg: In a photo album application if I am in “picture 3” I cannot request
the “next picture” but “picture 4”

– Server considers each client request in isolation and in terms of the
current resource state

• Service only needs to care about application state when client is making
a request. The rest of the time, it doesn’t even know the client exist.

– Client handles the application workflow

38

S1

S2
S3

37

38

1/20/2019

20

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Statelessness in WWW

•Originally the WWW is statless
– GET an URL always should return same website

•Multiple applications needs state information (login, last
accessed, visited pages)

– Cookies

– Session id in URL

39

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Connectedness (I)

•Resource representation MUST contain reference (links) to
other resources

– Including the relation among resources and optionally how to access
them

40

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

39

40

1/20/2019

21

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Connectedness (II)

41

<msg:Thread>

<msg:Message messageID="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-3"></atom:link>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

<msg:Message messageID="msg-7" replyTo="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-7"/>

<msg:Title>History</msg:Title>

<atom:link rel="http://forum/rels/parent-message"

href="http://forum/messages/msg-3"/>

<msg:Registered userID="user-1">

<user:Nickname>Mystery</user:Nickname>

<user:Avatar file="avatar_1.png"/>

<atom:link rel="self" href="http://forum/users/Mistery"/>

</msg:Registered>

</msg:Message>

</msg:Thread>

A representation of the message with
id «msg-3»

A representation of user with
nickname «HockeyFan»

A representation of the parent
message of «msg-7»

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Connectedness in WWW

•WWW is connected
– Access and modification of any resource state: following links or filling forms

42

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"

method="post">

<input type="text" name="message" value=""

required="true" />

<input type="submit" value="Post" />

</form>

41

42

1/20/2019

22

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RESTFUL WEB APIS.
HYPERMEDIA.

43

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Richardson Maturity Model

44

43

44

1/20/2019

23

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RESTful and Hypermedia

•PROGRAMMABLE WEB goal:
– Achieve a machine to machine understanding similar the client-

server understanding in the web.

• E.g. Modifying the object model in the server does not affect the server

•RESTful designers forgot one of the principles of REST:
– What needs to be done to make the REST architectural style clear on the

notion that hypertext is a constraint? In other words, if the engine of
application state (and hence the API) is not being driven by hypertext, then it
cannot be RESTful and cannot be a REST API.

Roy Fielding. REST APIs must be hypertext-driven

•Client does not need to know beforehand workflows or
request formats. All that information comes on the server
responses.

45

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS

46

Hypermedia As The Engine Of Application State

45

46

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

1/20/2019

24

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS (I)

•Hypermedia contains:
– Data

– Hypermedia controls
• Links

• Protocol specifications

• Ideally, client just need the entry point to the service
– The rest of the URI’s should be discovered through the hypermedia

controls
• Workflow always informed from the server

• Server informs about possible future states via hypermedia controls

– Well designed RESTful APIs permit modifying the server architecture
(e.g. URL structure) and data model without breaking the clients

47

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS (II)

48

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage with them
without dictating the goals

47

48

1/20/2019

25

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS (III)

• Hypermedia As The Engine Of Application State
– Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…) in a
way that all content is connected and accessible to the user

– Engine of Application State
• Hypermedia: Core and driving force of the transformation of the application state

• The server manipulates the client’s state by sending a hypermedia “menu” containing
options from which the client is free to choose.

• Hypermedia contains:

– Data

– Hypermedia controls:

» Enables the state transitions, guiding clients future requests.

» Provides protocol semantics: which URL, method, request body is required
to perform an application state transition.

» Server warrantees workflow control. The hypermedia control:
» Describe relationship among resources

» Explain who the client should integrate the response into the workflow

» In HTML <a>, , <script> and Link header are hypermedia control

• Hypermedia drives the application state

49

R

R

R R

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Semantic challenge (I)

•Browser does not understand problems domain.
– Humans process information coming from the server and decide on

future actions

• In M2M this is not possible:
– Machines NEED to understand the problem domain

– How can we program a computer to make the decisions about
which links to follow?

•This is the biggest challenge in web API design using
hypermedia: bridging the semantic gap between
understanding a document’s structure and understanding
what it means.

50

49

50

1/20/2019

26

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Semantic Challenge (II)
Semantic gap

•The gap between the structure of a document and its real-
world meaning

Protocol semantics
– What kind of actions a client can perform?

– Usually solved using hypermedia control

Application semantics
– How the representation is explained in terms of real world concepts.

– Same word might have different meanings in different contexts.

• E.g. time:

– Preparation time if we are using a recipe book

– Workout duration if we are building a gym agenda

– Time of the day if we are using a calendar

51

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Semantic challenge (III)

Two ways of communicating semantics to the client

52

Media Types Profiles

51

52

1/20/2019

27

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Media types

•Defines the format of the message

•Sometimes include protocol and application semantics

•General purpose media-types with hypermedia.

– Allows personalizing the protocol semantics and application
level semantics

– HAL, HTML, SIREN, MASON

53

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia control

•MUST contain the following information.

– The URI of the remote resource

– The relation of the current resource with the remote one

– Usually, protocol information

• E.g. which method I need to execute / what is the format of the
request body.

54

entities" : [

{ "class" : ["switch"],

"href" : "/switches/4",

"rel" : ["item"],

"properties" : { "position" : ["up"] },

"actions" : [

{ "name" : "flip",

"href" : "/switches/4",

"title" : "Flip the mysterious switch.",

"method": "POST"

}

]

}

]

Siren example

53

54

1/20/2019

28

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Media Types: Collection+JSON

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

55

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATSIN APPENDIX A: Hypermedia formats

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Profile

•Explains the document semantics that are not covered by its
media type.

• A profile describes the exact meaning of each semantic
descriptor

Jenny Gallegos

– “A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics[…] associated with the resource
representation, in addition to those defined by the media type”
[RFC 6906]

56

• Defined in a text document or using a specific description
language: ALPS, JSON-LD, RDF-Schema, XMDP

55

56

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

1/20/2019

29

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Twitter API

57

https://developer.twitter.com/en/docs.html

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Summary

• REST APIs must be hypertext driven according to Fielding:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

• HATEOAS
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

• Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

• Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

58

57

58

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

1/20/2019

30

Iván Sánchez Milara Programmable Web Project. Spring 2019.

DESIGN OF RESTFUL WEB APIS
USING ROA

59

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RESTful Web services design steps
60

1. Figure out the data set

2. Split the data set into resources

➢ Create Hierachy

3. Name the resources with URIs

4. Establish the relations and possible actions among resources

5. Expose a subset of the uniform interface

6. Design the resource representations using hypermedia formats
1. Define the media types

2. Define the profiles

7. Define protocol specific attributes
➢ E.g. Headers, response code

8. Consider error conditions: What might go wrong?

59

60

1/20/2019

31

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 1 - Figure out the data set
•Define the concepts that you are going to expose

in the Web API

•Describe the relations between them

61

Forum example
❑ Forum API permits users to publish new messages
❑ Users can post messages to different categories
❑ Users can reply to other users’ messages
❑ Every user has a public profile and a private profile

➢ Every user can check other users’ public profiles
➢ A private profile is shown only to that user’s friends

❑ Users can check the last messages anyone has
posted and commented

❑ Users can search messages in the forum using
several criteria: keywords, user, popularity, date published, date
commented, ...

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 2 - Split the data into resources (I)
• RESTful Web services expose 3 kinds of resources:

– Predefined one-off resources for important aspects of the application
• They are usually repository for other resources.

– Also known as Collections.
• They cannot be deleted and their state cannot be modified directly

– State only changes by modifying children resources

– A resource for every object exposed through the service
• A service may expose many kinds of objects, each with its own resource set
• Most services expose a large number of these resources

– Resources representing the results of algorithms applied to the data set
• Collections of resources, which are usually the results of queries

62

Forum example:
List of messages sent by a certain user; messages of a certain category

Forum example:
message categories (eg, Science category); particular users; particular messages

Forum example:
List of all users; list of all messages

61

62

1/20/2019

32

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 2 - Split the data into resources (II)

•Resources are ordered in a hierarchical way
– Hierarchy can be represent using a graph diagram

– Consider carefully the hierarchy when resources which represent results
of algorithms are involved; what is the result of the action?

• STEPS:
– Define all possible types of resources the Web service is intended to

expose
– Give a name to each resource type

– Define the hierarchy
– Define how those types of resources fit in the hierarchy
– Take into account the platform you are going to use

• Some platforms make it easier to create resources in certain way

63

Forum example:
Some of the resource types are: message, user, category

Iván Sánchez Milara Programmable Web Project. Spring 2019.

•Associate each resource type with a URI pattern
– In a resource-oriented service the URI contains

all the scoping info

• Design principles:
1. URIs should be descriptive

• The resource and its URI should be naturally and intuitively linked

2. Every URI designates exactly one resource
• Two resources can NOT share the same URI
• Two different resources may point to the same data (but they are

different resources!!!)
• Forum Example:

– At some moment the resources
/forum/users/user_id/last_message and
/forum/message/message_1

could point to the same data (a forum message),
but the resources are different!

3. The same resource can have one or many URIs

64

Step 3 - Name the resources with URIs (I)

63

64

1/20/2019

33

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 3 - Name the resources with URIs (II)

4. URIs should have a clear structure
• Variation should be predictable – a client knowing the structure of the service’s URI

should be able of building URIs
• Example:

–http://forum.com/users/user_1/public_profile

• Then, to get the public profile of user_2 the URI should be
– Correct: /users/user_2/public_profile
– Incorrect: /get_public_profile/user_2

• Use the following convention:
1) Use path variables to encode hierarchy: /parent/child

2) Use punctuation characters in path variables if there is no hiearchical relation:
/parent/child1;child2

» Use commas when the order of the scoping is important
» Use semicolon in other cases

3) Use query variables to imply inputs for an algorithm

65

Forum example:
❑ http://forum.example.com/Users/user1

❑ http:://forum.example.com/messages/message1;message2

❑ http://forum.example.com/Categories/Science

❑ http://forum.example.com/Users/user1/history?last=5

➢ Returns a list of the last 5 messages posted by user1

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 4 – Establish the relation

among resources

•State diagram of the application

•Will help later to design the hypermedia

66

65

66

1/20/2019

34

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 5 - Expose a

subset of the uniform interface (I)

•Explain what happens to each resource when it is exposed to
any of the methods of the uniform interface

– Remember: A resource DOES NOT have to expose all the methods

– If your resource is read-only, then expose two methods: GET and/or
HEAD

– If your resource can be created or modified you need to implement PUT,
POST and/or DELETE

•Avoid creating your own methods (by overloading POST)
– If you think you need an extra method,

change the verb into a noun and create a resource

– Example: If you think you need a method named publish just create a
resource named publication. Use the uniform interface operations to
modify it (e.g. POST a publication)

67

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 5 - Expose a

subset of the uniform interface (II)
•Forum examples:
– Get all messages from the Sports category

– Create a new User

• User information in the HTTP request body

– Post a message into Science category

• Message content and details of the user are in the message body

– Delete the message msg-4

68

GET http://forum.example.com/Category/Sports

DELETE http://forum.example.com/Category/Computers/Messages/msg-4

POST http://forum.example.com/Category/Science/Messages

PUT http://forum.example.com/Users/nicky

67

68

1/20/2019

35

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Steps 6. Design the resource representation using
hypermedia formats

• Assign to each resource representation a format to transfer the
resource state between client and server

– HYPERMEDIA
– The same resource can have different representation formats, but:

• The server must understand all representations sent by the clients
• The server must use a representation format the clients can understand

– A client can ask for a specific format in the URI:
» Eg: http://forum.example.com/users/user_1.xml

– A client can send HTTP headers indicating the formats it accepts:
» RFC2616 defines the following headers: Accept, Accept-

Encoding…

•NOTE: The resources representations sent
from the client does not need to use
hypermedia: JSON OR XML IS ENOUGH

69

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Media types (I)

• Domain specific standards
– Defines application level and protocol level semantics
– OpenSearch, SVG, VoiceXML

• Standard for specific patterns (e.g. collection pattern)
– Defines protocol level but not application level standards

• Collection+JSON, Atom, Odata

• Microformat and microdata
– Defines protocol level but not application level
– Microformat:

• Extension of HTML4. Allows using the class attribute to define semantics

– Microdata:
• Extension of HTML5. Use itemprop, itemscope and itemtype attributes to define the

semantics

– Lots in schema.org

• General purpose media-types.
– Allows personalizing the the protocol semantics and application level semantics
– HAL, HTML, SIREN

• Be careful with fake hypermedia: XML and JSON

70

69

70

1/20/2019

36

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Media types (II)

• If you use your own media type be sure that hypermedia
controls:

– The URI of the remote resource

– The relation of the current resource with the remote one

– Try to include protocol information

• E.g. which method I need to execute / what is the format of the
request body

• If you are using XHTML:
– Use <a> to have a link to another resource

– Use <form> when you:

• Include in the URI a query string

• Represent URIs that follow a certain pattern

71

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Domain specific media types. Creating
links (I)

• Using xlink (http://www.w3.org/1999/xlink) attributes to create links:

– Establish a relation between a local XML element and
remote resources

• xlink:type=”simple” : Simple relation between
current XML element and remote resource

• xlink:href=”uri” : Provides the path to the linked resource

• Other voluntary attributes are:

– xlink:role is a URI which indicates the relation between two resources

– xlink:title is a human readable label which describes the link

– More complicated relations can be established using
other association types: extended, locator, arc, resource

<users xmlns:xlink=”http://www.w3.org/1999/xlink>

<user xlink:type=”simple” xlink:href=”http://forum/users/axel”>

<nickname>Axel</nickname>

</user>

<user xlink:type=”simple” xlink:href=”http://forum/users/bob”>

<nickname>Bob</nickname>

</user>

</users>

72

71

72

http://www.w3.org/1999/xlink

1/20/2019

37

Iván Sánchez Milara Programmable Web Project. Spring 2019.

• Using atom:link (http://www.w3.org/2005/Atom)

– Element <atom:link> contains attributes to establish a relation between
resources:

•href: indicates the URI of the linked resource
•rel: establish the semantic association between the resources. Different values:

– self: the link points to the resource itself
– More values on next slide

•type: indicates the mime type of the representation

<users xmlns:atom=”http://www.w3.org/2005/Atom”>

<user>

<atom:link rel=”self” href=”http://forum/users/axel”>

<nickname>Axel</nickname>

</user>

<user>

<atom:link rel=”self” href=”http://forum/users/bob”>

<nickname>Bob</nickname>

</user>

</users>

73

{users:[

user:{nickname:”Axel”,link:{rel:”self”,href=” http://forum/users/axel”}},

user:{nickname:”Bob”,link:{rel:”self”,href=” http://forum/users/bob”}}

]}

XML

JSON

Domain specific media types. Creating
links (II)

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Domain specific media types. Creating links
(III)

•Using atom:link (cont)
– More values for rel attribute:

•alternate: alternate representation of the same resource

•edit: clients can edit the resource using this link

•related: the linked resource has certain relation with the current
reource

•via: identifies the source for the information of current resource

•enclosure: the link is a resource which contains current resource

•previous, next: previous and next element in a list

•first, last: first and last element of a list

• Application developer can create application specific relations, expressed
as URI

– Very useful to manage application flow
Drawback: it is application dependant

74

73

74

http://www.w3.org/2005/Atom

1/20/2019

38

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Domain specific media types. Creating links (IV)

• URI templates permit exposing an unlimited number of resources of the same type using
just one URI

– Parametrize URIs with variables that can be substituted at runtime
• Variable names are shown between {}

– Useful for the client to deliver parameters for an algorithm:
• http://forum/messages?older_than={timestamp}&maxReturned={max_returned}

– And to access a resource from a large set:
• http://forum/users/{user_id}

• In this case the client should have some knowledge on possible values

• URI templates are generated in the servers
– They are parts of the links to other resources included in a resource representation; clients can fill the

templates

• However, there are no conventions for representing URI templates
• Do not abuse URI templates

– If you doubt then do not use URI templates
– Use links when the set of results is known

• Use URI templates for:
– Documentation
– To identify resources in servers that accept URI template syntax

75

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Profiles

•A profile must define:
– Link relations:

• Describing the state transition that will happen if the client triggers a
hypermedia control (protocol semantics)

• Usually implemented as ’rel’ attribute
– http://www.iana.org/assignments/link-relations/link-relations.xhtml

– Must be documented unless rel attribute is defined by IANA

• Do not forget to include the method that is utilized

– Semantic descriptors:

• Describing the meaning of properties in the representation (application
semantics)

76

75

76

http://www.iana.org/assignments/link-relations/link-relations.xhtml

1/20/2019

39

Iván Sánchez Milara Programmable Web Project. Spring 2019.

IANA link relations

• Global register containing about 60 relations.
– http://www.iana.org/assignments/link-relations/link-relations.xhtml

– Some useful relations:
• collection and item to create collections.

• first, last, next and previous for pagination

• replies to described message thread

• latest-version, successor-version, working-copy for history of a resource state

• edit and edit-media to cover update/delete a resource

• Some document media types defines its own possible relations

• Some profiles include also relations

• If you wanna use your own link relation
– Use extension relations: http://mydoma.in/myrelation

• Microformats Wiki also contains a big set of relations:
– http://microformats.org/wiki/existing-rel-values

– DO NOT USE THEM AS SUCH IF YOU HAVE NOT DEFINED THEM IN YOUR
PROFILE

77

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Linking to a profile

• Using the profile Link relation:

– RFC 6906 defines a rel called profile

– Can be used in any rel attribute: links (Siren or Collection+Json); link
defined in HTML, HAL or in the Link HTTP header.

<html>

<head>

<link href="http://microformats.org/wiki/hcard" rel="profile">

• Using the profile Media Type parameter:

– Added as parameter in the Content-Type header

Content-Type = application/collection+json;profile=http://myprofile

• Using special purpose hypermedia controls defined in some media types.

78

77

78

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://mydoma.in/myrelation
http://microformats.org/wiki/existing-rel-values
http://myprofile/

1/20/2019

40

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Steps 6. Design the resource representation using
hypermedia formats

79

Forum example. Message resource.
Media type: HAL

{

"_links":{

"self":{"href":"/forum/api/messages/msg-

2/" "profile":"http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message"},

"collection":{"href":"/forum/api/messages/", "type":"application/vnd.collection+json", "profile":"http://atlassi

an.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message"},

"author":{"href":"/forum/api/users/AxelW/", "type":"application/hal+json", "profile":"http://atlassian.virtues.f

i:8090/display/PWP/Exercise+3#Exercise3-Forum_User"},

"in-reply-to":{"href":null "profile":"http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-

Forum_Message"}

}

"template" : {

"data" : [

{"prompt" : "", "name" : "headline", "value" : "", "required":true},

{"prompt" : "", "name" : "articleBody", "value" : "", "required":true},

{"prompt" : "", "name" : "editor", "value" : "", required:false},

{"prompt" : "", "name" : "author", "value" : "", required:false},

]

}

"articleBody":"I am using a float layout on my website but I've run into some problems with Internet Explorer. I

have set the left margin of a float to 100 pixels, but IE uses a margin of 200px instead. Why is that? Is this one

of the many bugs in IE?",

"headline":"CSS: Margin problems with IE",

"editor":null,

"author":"AxelW"

}

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 7. Define protocol specific attributes

•The resource representation is encapsulated in the HTTP

request/response message
– The HTTP body contains the representation

– The HTTP entity headers contain metadata about the representation e.g.

Its media type. Some important headers are:

•Content-Type: mime-type of the representation format
– A list of mime types can be found in RFC2045 and RFC2046

•Content-Length: size of the body

•Accept: formats a client understands (only in HTTP request)

•Accept-Encoding: encoding accepted for the body

• Other headers can be used for other purposes:
– caching, authorization...

80

79

80

http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_User
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message

1/20/2019

41

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 7 - Define protocol specific attributes
• An HTTP response includes a status code indicating how the request was

processed in the server

– Headers provide additional information

• Response code + headers indicating success:

– GET

– DELETE

– POST and PUT

200 OK No headers Successful request

304 Not Modified No headers The client must get the resource from the cache

200 OK No headers
Successful request. The HTTP body might contain a status
message

201 Created Location
Successful creation. Location header indicates the URI of the
resouce

200 OK No headers
The resource existed and has been modified. The Body could
contain the new resource

301 Moved permanently Location The data sent caused the resource URI to be changed

81

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Step 8 - Define possible errors
• Define when and how a request could fail

– Define the error message in the response body. It should be another resource

• Define also the response status codes and the headers of the response:

– GET and DELETE

– PUT and POST

404 Not Found No headers
Resource was not found. HTTP body message might have
contained an error message.

303 See Other Location
The resource was not found. Location header provides a
related resource.

400 Bad Request No header The URI contained some erroneous fields or parameters

415 Unsopported Media Type No headers
The representation format is not supported
by the server

409 Conflict No header
The representation tried to change the resource
to a state that is not allowed

400 Bad Request No header The resource representation contained an invalid value

82

81

82

1/20/2019

42

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Basic workflow between
client and web service

CLIENT SERVER

Send HTTP request

❑Check the HTTP method
❑Check the headers
❑Parse the message body
❑Perform the requested action
❑Build the response message
▪ HTTP response code
▪ headers
▪ message body

Send HTTP response

❑Check HTTP response code.
❑Proceed according to the

response code:
▪ process the message body
▪ perform needed actions
▪ handle exceptions

Build the HTTP envelope.
Include method information.
Headers and message
body if needed.

83

Iván Sánchez Milara Programmable Web Project. Spring 2019.

• Get all messages from the Sports category

– HTTP Method: GET

– URI: http://forum.example.com/Category/Sports

– Returns:

• On success: 200 OK + XML message body

• On error: 401 Unauthorized or 404 Not found

Forum example - GET

Request HTTP envelope

GET Category/Sports/ HTTP/1.1

Host: forum.example.com

Accept: text/xml

Accept-Encoding: gzip,deflate

Accept-Charset: windows-

1251,utf-8;q=0.7,*;q=0.7

Successful HTTP response envelope

HTTP/1.1 200 OK

Date: Sun, 12 Sep 2010 11:30:12 GMT

Transfer-Encoding: chunked

Content-Type: text/xml;

Content-Length: length;

<?xml version="1.0" encoding="UTF-8"?>

<msg:Thread>

<msg:Message messageID="msg-3">

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

</msg:Registered>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi...

(...)

</msg:Message>

(…)

<msg:Thread>

84

83

84

1/20/2019

43

Iván Sánchez Milara Programmable Web Project. Spring 2019.

• Post the message into Science category
– HTTP Method: POST

– URI: http://forum.example.com/Category/Science/Messages

– Request: XML message body

– Returns:

• On success: 201 Created (Location header tells the URI of created message)

• On error: 400 Bad Request or 409 Conflict

Forum example - POST

Request HTTP envelope

POST Category/Science/Messages HTTP/1.1

Host: forum.example.com

Accept: text/xml

Accept-Encoding: gzip,deflate

Accept-Charset: windows-1251,utf-

8;q=0.7,*;q=0.7

Content-Type: text/xml;charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="UTF-8"?>

<msg:Message messageID=“" replyTo="msg-1">

<msg:Anonymous>Science guru</msg:Anonymous>

(...)

</msg:Message>

Successful HTTP response envelope

HTTP/1.1 201 Created

Date: Tue, 19 Sep 2010 06:11:22 GMT

Content-Type: text/xml; charset=iso-8859-1

Content-Length: length

Location:
http://forum.example.com/Category/Science/Messages/msg-4

<?xml version="1.0" encoding="UTF-8"?>

<msg:Message messageID=“msg-4" replyTo="msg-1">

<msg:Anonymous>Science guru</msg:Anonymous>

<msg:Title>In case</msg:Title>

<msg:Body>Just in case you can't ...

(...)

</msg:Message>

85

Iván Sánchez Milara Programmable Web Project. Spring 2019.

• Delete certain message

– HTTP Method: DELETE

– URL: http://forum.example.com/Category/Science/Messages/msg-4

– Returns:

• On success: 204 No Content

• On error: 401 Unauthorized or 404 Not Found

Forum example - DELETE

Error HTTP response

HTTP/1.1 404 Not Found

Date: Tue, 19 Sep 2010 06:11:22 GMT

Content-Type: text/html; charset=iso-8859-1

Content-Length: length

Keep-Alive: timeout=15, max=96

Connection: Keep-Alive

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head>

<title>404 Not Found</title>

</head>

<body>

<h1>Not Found</h1>

<p>The requested message msg-4 was not found on

this server.</p>

</body>

</html>

Request HTTP envelope

DELETE

Category/Science/Messages/msg-4

HTTP/1.1

Host: forum.example.com

Accept: text/xml, text/html

Accept-Encoding: gzip,deflate

Accept-Charset: windows-1251,utf-

8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

86

85

86

1/20/2019

44

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HYPERMEDIA DRIVEN DESIGN

87

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Resource driven vs Hypermedia
driven

•Resource driven design
– MOST utilized approach nowadays when people talk about REST

– Nouns is the most important

•Hypermedia driven design
– ACTION is the most important

– Acknowledges that the state transitions are even more important
than the state itself.

• I want to do a thing.

• Which verbs should I use to do that?

– Previous state transitions will provide ‘affordances’ that indicates
what actions I can perform next and a way of figuring out more
information about those affordances if we do not know it already.

87

88

1/20/2019

45

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Design process (I)

1.Evaluate processes

2.Create state machine

3.Evaluate media types

4.Create or choose media types

5. Implementation!

6.Refinements

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Design process (II)

•Documenting a REST API => defining the media types.

“A REST API should spend almost all of its descriptive effort in defining the
media type(s) used for representing resources and driving application
state, or in defining extended relation names and/or hypertext-enabled
mark-up for existing standard media types. Any effort spent describing
what methods to use on what URIs of interest should be entirely defined
within the scope of the processing rules for a media type (and, in most
cases, already defined by existing media types)”

Roy Fielding. REST APIs must be hypertext-driven

•The media type is the only sort of contract between the
client and the server

90

89

90

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

1/20/2019

46

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia driven APIs. Examples.

91

Mike Amundsen. REST, Hypermedia, and the Semantic Gap: Why "RMM Level-3 REST" is not
enough.

Simpler clients. No memorize workflow, objects or URL. Just implement how
to process hypermedia controls.

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia driven APIs examples

•Skype for business:
– https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

•Paypal is promoting the use of Hypermedia in their REST API:
– https://developer.paypal.com/docs/api/overview/

– https://developer.paypal.com/docs/integration/direct/paypal-rest-
payment-hateoas-links/

•Amazon AppStream:
– http://docs.aws.amazon.com/appstream/latest/developerguide/api

-reference.html

•Foxycart:
– https://api.foxycart.com/docs#

•Zalando:
– http://zalando.github.io/restful-api-guidelines/index.html

92

91

92

https://www.youtube.com/watch?v=UkAt9XSOfaE
https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

1/20/2019

47

Iván Sánchez Milara Programmable Web Project. Spring 2019.

References

1.“RESTful Web Services” by Leonard Richardson and Sam Ruby

2.“RESTful Web APIs” by Leonard Richardson, Mike Amundsen and Sam Ruby

3.“RESTful Web Services Cookbook” by Subbu Allamaraju

4.“REST in practice. Hypermedia and Systems Architecture” by Jim Webber, Savas
Parastidis and Ian Robinson.

5.Representational State Transfer (REST), Roy Thomas Fielding. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

6.“Peer-to-Peer Systems and Applications” Ralf Steinmetz KlausWehrle (Eds.)

Available at http://www.springerlink.com/content/g6h805426g7t/#section=586017&page=1

7. ATOM http://www.ietf.org/rfc/rfc4287.txt

8.HTTP 1.1 http://tools.ietf.org/html/rfc2616

9.JSON http://www.json.org/

93

93

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.springerlink.com/content/g6h805426g7t/
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/html/rfc2616
http://www.json.org/

