
1/10/2019

1

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web Project
Part 2: Programmable Web

Spring 2019

• Services and APIs

• Programmable Web

Iván Sánchez Milara Programmable Web Project. Spring 2019.

SERVICES AND APIS

2

1

2

1/10/2019

2

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web services (I)

• Web services are logical units with clearly defined
interfaces (API):

– what functionality they perform and

– which data formats they accept and produce

• They are application independent

– services can be used by other services and applications.

• Web service can incorporate the functionality of other
services (composite service)

Service Service Service

Appl ication Appl ication

Service

3

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web APIs

•Application Programming Interfaces

•Defines how the service functionality is exposed by means of
one or more endpoints:

– Protocol semantics

– Application semantics

•Nowadays, web service word is in disuse => We use Web
API instead

5

3

5

1/10/2019

3

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web API
6

Bus iness Logic

Web API

PYTHON
CLIENT

HTTP Request

JAVA
CLIENT

SQL/
NoSQL

Database

BROWSER
CLIENT

HTML & CSS

Javascript A
JA

X

HTTP Request

HTTP Request

WEB API

HTTP Request

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Website vs Web API

•Gist:
– Github tool that allows sharing code and applications

– Website at: https://gist.github.com/

– API at https://developer.github.com/v3/gists/

– Gist clients: https://gist.github.com/defunkt/370230

• For instance, Sublime Text cl ient: https://github.com/condemil/Gist

7

6

7

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist

1/10/2019

4

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Architectural styles

•RPC

•REST
– CRUD

– Hypermedia (HATEOAS)

9

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RPC-style Web APIs

•RPC: Remote procedure call
– A method or subroutine is executed in another address space,

without the programmer explicitly encoding the details of the
remote interaction.

•An RPC-style Web API accepts an envelope full of data from
its client, and sends a similar envelope back.

– The method and the scoping information are kept inside the
envelope, or on stickers applied to the envelope.

•Every RPC-style Web API defines a brand new vocabulary:
method name, method parameters

•Some examples:
– XML-RPC

– SOAP.

10

9

10

1/10/2019

5

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RPC

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

11

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation
.pdf

– Does not define an architecture but requirements for the
architecture

•Representation
– Resource-oriented: operates with resources.

• Resource: Any piece of information that
can be named. Identified generally by URL

•State:
– value of all properties of a resourceat the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

– UNIFORM interface

12

11

12

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

1/10/2019

6

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST APIs

•CRUD

– Most extended approach. Majority of Web APIs nowadays

– Not follow strictly REST principles

• More on this next lecture

•Hypermedia
– Follows strictly REST principles

13

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Twitter API

14

https://developer.twitter.com/en /docs.html

13

14

1/10/2019

7

Iván Sánchez Milara Programmable Web Project. Spring 2019.

What about current Web
applications (RPC or CRUD)?

•Need excessive documentation

– Exhaustive description of required protocol: HTTP methods, URLs …

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

– Application workflow

15

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)
– Nowadays an specific client is needed per application at least

until we solve the problems derivated from the semantic
challenge

–A client can be implemented using any programming language
– Data is encapsulated and transmitted using any serialization

languages such as JSON, XML, HTML, YAML

16

15

16

1/10/2019

8

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web

17

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One cl ient

Programmable Web:
• Targeted to machines
• Heterogeneous clients

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2018

• ROA Principles

• RESTful Web APIs

• Designing RESTful Web APIs

• Resource Oriented design vs
hypermedia driven design

17

19

1/10/2019

9

Iván Sánchez Milara Programmable Web Project. Spring 2019.

FORUM EXAMPLE

21

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Forum resource representation

23

forum

CategoryUser

Name

Description
Thread

Name

FirstName LastName Message

21

23

1/10/2019

10

Iván Sánchez Milara Programmable Web Project. Spring 2019.

INTRODUCTION TO ROA

24

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
–value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

25

24

25

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

1/10/2019

11

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST Constraints

•Client-server architecture

•Stateless

•Cacheability

•Layered system

•Code on demand

•Uniform interface

26

Iván Sánchez Milara Programmable Web Project. Spring 2019.

ROA Introduction

•Resource Oriented Architecture (ROA)

– Architecture for creating Web APIs

– It conforms the REST design principles

– Base technologies: URLs, HTTP and Hypermedia

•Richardson and Ruby [1] call the Web services with a ROA

architecture RESTful Web services

– In the course we call them RESTful Web APIs

•RESTful Web services work in a similar way as the Web

(“Programmable Web”)

– However not necessarily for human consumption

28

26

28

1/10/2019

12

Iván Sánchez Milara Programmable Web Project. Spring 2019.

ROA. Resources and manipulation

•Resource :

– Anything important enough to be referenced as a thing itself

• For example: List of the libraries of the city of Oulu, the last software version of

Windows, the relation between two friends, the result of factorizing a number

– Each resource is identified by a unique id:

• Uniform Resource Identifier (URI)

•We operate with resources representations:
• State of the resource at certain time

• Encoded in JSON, HTML or other hypermedia formats

•HTTP requests are used to manipulate the state of a resource
– URI : Identifies the resource to manipulate

http://www.forum.com/users/Nicky

– HTTP method: The action to be performed to manipulate the resource

29

Scope

Iván Sánchez Milara Programmable Web Project. Spring 2019.

ROA pillars

30

Four properties:

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness

29

30

1/10/2019

13

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Addressability

•Exposes the interesting aspects of its data set as resources

–Each resource is exposed using its URI

–The URI can be copied, pasted and distributed

–Example:
•http://forum.com/users/user1 refers to the information of

the user of the Forum

• I can send this URI by email, and the receiver can access this
information by copying this URI into his/her browser

31

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Addressability in WWW

•The WWW is addressable

32

31

32

1/10/2019

14

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface (I)

•Every API uses the same methods with the same meanings
– Without a uniform interface, cl ients have to learn how each API is expected

to get and send information

•ROA uses uniform interface provided by HTTP to act over the
resource provided in the URI

33

Method Description

GET Returns the resource representation

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface (II)

•PATCH http://tools.ietf.org/html/rfc5789

– Partial edition/modification of a resource

• Cl ient and server must agree on a new media type for patch
documents

– RFC 6902: proposed standard patch format for JSON.

• Send a diffof the resource representation. Changes to be done to the
resource.

• Content-Type: application/json-patch+json

• [{ "op": "remove", "path": "/a/b/c" }, { "op": "add", "path": "/a/b/c",

"value": ["foo", "bar"] }, { "op": "replace", "path": "/a/b/c",

"value": 42 }]

35

33

35

http://tools.ietf.org/html/rfc5789

1/10/2019

15

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface (III)

• URI: http://forum.com/messages/msg-3

– GET: Retrieves this representation

– DELETE: Removes the message with id «msg-3» from the server

– PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderIP, and Registered
could be modified and MUST be included in the request body (The complete
representation is sent and it replaces the old one)

– POST: Add a response to the message with id «msg-3» (subordinate resource). The
body of the request should include the new message

36

<msg:Message messageID="msg-3">

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi Markkanen used to play before

he came to Edmonton Oilers? He was excellent in the Stanley Cup finals

last season! Too bad they lost...</msg:Body>

<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>

<msg:SenderIP>217.119.25.162</msg:SenderIP>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Uniform interface in WWW

•Only GET and POST supported in HTML

•Rest of HTTP methods supported through Javascript

37

36

37

1/10/2019

16

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Statelessness (I). State concept.
•Resource state:

–A resource representation that is exchanged between server and
client:

• The values of information items belonging to the resource

• Links to related resources and future states of applications (including protocol information)

–Same for all the clients making simultaneous requests

–Kept in the server

•Application state:
–Snapshot of the entire system at a particular instant

• What I have done til l now and what can I do in the future (application
workflow)

–Future possible application states are informed in the resource
representation sent by the server.

–Kept in the client until it can be used to create, modify or delete a
resource

38

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Statelessness (II)

•Every HTTP request happens in complete isolation
(STATELESS)

– Server never operates based on information from previous
requests, does not store application state

• Eg: In a photo album application i f I am in “picture 3” I cannot request
the “next picture” but “picture 4”

– Server considers each client request in isolation and in terms of the
current resource state

• Service only needs to care about application state when client is making
a request. The rest of the time, i t doesn’t even know the cl ient exist.

– Client handles the application workflow

39

S1

S2
S3

38

39

1/10/2019

17

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Statelessness in WWW

•Originally the WWW is statless
– GET an URL always should return same website

•Multiple applications needs state information (login, last
accessed, visited pages)

– Cookies

– Session id in URL

40

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Connectedness (I)

•Resource representation MUST contain reference (links) to
other resources

– Including the relation among resources and optionally how to access
them

41

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

40

41

1/10/2019

18

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Connectedness (II)

42

<msg:Thread>

<msg:Message messageID="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-3"></atom:link>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

<msg:Message messageID="msg-7" replyTo="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-7"/>

<msg:Title>History</msg:Title>

<atom:link rel="http://forum/rels/parent-message"

href="http://forum/messages/msg-3"/>

<msg:Registered userID="user-1">

<user:Nickname>Mystery</user:Nickname>

<user:Avatar file="avatar_1.png"/>

<atom:link rel="self" href="http://forum/users/Mistery"/>

</msg:Registered>

</msg:Message>

</msg:Thread>

A representation of the message with
id «msg-3»

A representation of userwith
nickname «HockeyFan»

A representation of the parent
message of «msg-7»

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Connectedness in WWW

•WWW is connected
– Access and modification of any resource state: following links or filling forms

43

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"

method="post">

<input type="text" name="message" value=""

required="true" />

<input type="submit" value="Post" />

</form>

42

43

1/10/2019

19

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RESTFUL WEB APIS.
HYPERMEDIA.

44

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS

48

Hypermedia As The Engine Of Application State

44

48

1/10/2019

20

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS

•Hypermedia contains:
– Data

– Hypermedia controls
• Links

• Protocol specifications

•Ideally, client just need the entry point to the service
– The rest of the URI’s should be discovered through the hypermedia

controls
• Workflow always informed from the server

• Server informs about possible future states via hypermedia controls

– Well designed RESTful APIs permit modifying the server architecture
(e.g. URL structure) and data model without breaking the clients

49

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HATEOAS

50

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage with them
without dictating the goals

49

50

1/10/2019

21

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Semantic challenge (I)

•Browser does not understand problems domain.

– Humans process information coming from the server and decide on
future actions

•In M2M this is not possible:
– Machines NEED to understand the problem domain

– How can we program a computer to make the decisions about
which links to follow?

•This is the biggest challenge in web API design using
hypermedia: bridging the semantic gap between
understanding a document’s structure and understanding
what it means.

51

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Semantic Challenge (II)
Semantic gap

•The gap between the structure of a document and its real-
world meaning

Protocol semantics
– What kind of actions a client can perform?

– Usually solved using hypermedia control

Application semantics

– How the representation is explained in terms of real world concepts.

– Same word might have different meanings in different contexts.

• E.g. time:

– Preparation time if we are using a recipe book

– Workout duration i f we are building a gym agenda

– Time of the day i f we are using a ca lendar

52

51

52

1/10/2019

22

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Semantic challenge (III)

Two ways of communicating semantics to the client

53

Media Types Profiles

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Media types

•Defines the format of the message

•Sometimes include protocol and application semantics

•General purpose media-types with hypermedia.

–Allows personalizing the protocol semantics and application
level semantics

–HAL, HTML, SIREN, MASON

54

53

54

1/10/2019

23

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia control

•MUST contain the following information.

– The URI of the remote resource

– The relation of the current resource with the remote one

– Usually, protocol information

• E.g. which method I need to execute / what is the format of the
request body.

55

entities" : [

{ "class" : ["switch"],

"href" : "/switches/4",

"rel" : ["item"],

"properties" : { "position" : ["up"] },

"actions" : [

{ "name" : "flip",

"href" : "/switches/4",

"title" : "Flip the mysterious switch.",

"method": "POST"

}

]

}

]

Siren example

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Media Types: Collection+JSON

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

56

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATSIN APPENDIX A: Hypermedia formats

55

56

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

1/10/2019

24

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Profile

•Explains the document semantics that are not covered by its
media type.

• A profile describes the exact meaning of each semantic
descriptor

Jenny Gallegos

–“A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics[…] associated with the resource
representation, in addition to those defined by the media type”
[RFC 6906]

57

• Defined in a text document or using a specific description
language: ALPS, JSON-LD, RDF-Schema, XMDP

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Twitter API

58

https://developer.twitter.com/en /docs.html

57

58

1/10/2019

25

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Summary

•REST APIs must be hypertext driven according to Fielding:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

•HATEOAS
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

•Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

•Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

59

Iván Sánchez Milara Programmable Web Project. Spring 2019.

DESIGN OF RESTFUL WEB APIS
USING ROA

60

59

60

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

1/10/2019

26

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RESTful Web services design steps
61

1. Figure out the data set

2. Split the data set into resources

➢ Create Hierachy

3. Name the resources with URIs

4. Establish the relations and possible actions among resources

5. Expose a subset of the uniform interface

6. Design the resource representations using hypermedia formats
1. Define the media types

2. Define the profiles

7. Define protocol specific attributes
➢ E.g. Headers, response code

8. Consider error conditions: What might go wrong?

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HYPERMEDIA DRIVEN DESIGN

88

61

88

1/10/2019

27

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Resource driven vs Hypermedia
driven

•Resource driven design

– MOST util ized approach nowadays when people talk about REST

– Nouns is the most important

•Hypermedia driven design
– ACTION is the most important

– Acknowledges that the state transitions are even more important
than the state itself.

• I want to do a thing.

• Which verbs should I use to do that?

– Previous state transitions will provide ‘affordances’ that indicates
what actions I can perform next and a way of figuring out more
information about those affordances if we do not know it already.

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Design process (I)

1.Evaluate processes

2.Create state machine

3.Evaluate media types

4.Create or choose media types

5.Implementation!

6.Refinements

89

91

1/10/2019

28

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Design process (II)

•Documenting a REST API => defining the media types.

“A REST API should spend almost all of its descriptive effort in defining the
media type(s) used for representing resources and driving application
state, or in defining extended relation names and/or hypertext-enabled
mark-up for existing standard media types. Any effort spent describing
what methods to use on what URIs of interest should be entirely defined
within the scope of the processing rules for a media type (and, in most
cases, already defined by existing media types)”

Roy Fielding. REST APIs must be hypertext-driven

•The media type is the only sort of contract between the
client and the server

92

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia driven APIs examples

•Skype for business:
– https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

•Paypal is promoting the use of Hypermedia in their REST API:
– https://developer.paypal.com/docs/api/overview/

– https://developer.paypal.com/docs/integration/direct/paypal -rest-
payment-hateoas-links/

•Amazon AppStream:
– http://docs.aws.amazon.com/appstream/latest/developerguide/api

-reference.html

•Foxycart:
– https://api.foxycart.com/docs#

•Zalando:
– http://zalando.github.io/restful -api-guidelines/index.html

94

92

94

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

1/10/2019

29

Iván Sánchez Milara Programmable Web Project. Spring 2019.

References

1.“RESTful Web Services” by Leonard Richardson and Sam Ruby

2.“RESTful Web APIs” by Leonard Richardson, Mike Amundsen and Sam Ruby

3.“RESTful Web Services Cookbook” by Subbu Allamaraju

4.“REST in practice. Hypermedia and Systems Architecture” by Jim Webber, Savas
Parastidis and Ian Robinson.

5.Representational State Transfer (REST), Roy Thomas Fielding. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

6.“Peer-to-Peer Systems and Applications” Ralf Steinmetz KlausWehrle (Eds.)

Avai lable at http://www.springerlink.com/content/g6h805426g7t/#section=586017&page=1

7. ATOM http://www.ietf.org/rfc/rfc4287.txt

8.HTTP 1.1 http://tools.ietf.org/html/rfc2616

9.JSON http://www.json.org/

95

95

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.springerlink.com/content/g6h805426g7t/
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/html/rfc2616
http://www.json.org/

