
Iván Sánchez Milara Programmable Web Project. Spring 2020.

Programmable Web Project
Part 1: Introduction

Spring 2019

The World Wide Web

Technologies for the World Wide Web
• Backend: Business logic + data storage

(databases)

• Transport protocol: HTTP

• Data serialization languages

• Clients

• Services and APIs

• Programmable Web

Iván Sánchez Milara Programmable Web Project. Spring 2020.

The World Wide Web

2

Iván Sánchez Milara Programmable Web Project. Spring 2020.

What is the World Wide Web?

https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay
=1

3

https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1
https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1

Iván Sánchez Milara Programmable Web Project. Spring 2020.

What is the World Wide Web?

•Human consumption (H2M)

•Hypertext

•Uniform API and technologies

•Single client (Web browser)

4

Goal: Distribute data

Iván Sánchez Milara Programmable Web Project. Spring 2020.

World Wide Web success. Scalability

Web is distributed Web is massively
decoupled

Web is dynamic

5

Source (2019): https://www.domo.com/learn/data-
never-sleeps-7

https://www.domo.com/learn/data-never-sleeps-7

Iván Sánchez Milara Programmable Web Project. Spring 2020.

How the WWW works?

http://www.youtypeitwepostit.com/

6

http://www.youtypeitwepostit.com/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

TECHNOLOGIES FOR THE WWW

•Backend: Business logic + data storage (databases)

•Transport protocol: HTTP

•Data serialization languages

•Clients

7

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Client server model

8

© David Vignoni LGPL license
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg

Iván Sánchez Milara Programmable Web Project. Spring 2020.

BACKEND

9

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Backend

•Stores application data persistently

–DATABASE

•Defines how to process request from the client and
process the data according to the requests coming
from the client

–BUSINESS LOGIC

•Expose the data using a defined API

10

Iván Sánchez Milara Programmable Web Project. Spring 2020.

DATABASES

11

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Definition

•Databases emerged to solve challenges of storing and managing
huge amounts of data

•A database:
– is a data structure

– stores organized information

– can be easily accessed, managed and updated

•DBMS (Database Managing System) is the software that allows
creating, managing and storing database structures.

– Responsible for data integrity, recovery and access

– Provides a way for extract or modify the data

•There are different ways to model the data in the database
– Lately divided into relational models and non-relational models

12

Iván Sánchez Milara Programmable Web Project. Spring 2020.

ACID properties

•Atomicity
– Each transaction is atomic.

– If one part of the transaction fails the whole transaction fails and
the database is not modified.

•Consistency
– Databases moves from one valid state to another valid state in each

transaction.

– A state is valid if meets all the constraints

• Isolation
– Concurrent access is processed as serial access.

– Not completed transactions might not be visible to other users

•Durability
– Once a transaction is committed it remains in the db.

13

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Relational – Non-relational

•Relational:
– Database model developed by E.F. Codd in 1970

• Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared
Data Banks"

– Data is represented in terms of tuples (rows), grouped into relations
(tables) that can be linked with each other.

– Developed almost in parallel with SQL language

•Non-Relational:
– Sometimes miscalled Non SQL databases

– Umbrella that gathers different databases that are not relational.

– Data is not organized in related tables.

• Some store objects, some store key-value pairs,
some store documents

– More flexible and scalable

14

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2020.

RDBMS Concepts

•CRUD
– Databases stores data persistently

– There are four basic functions to manage persistent data:

• Create

• Read

• Update

• Delete

•ORM (Object relational mapping)
– To access a relational database from an object oriented language

context (PHP, Python, Java…)

• interface translating relational logic to objects logic is needed.

• Such interface is called Object-relational mapping (ORM, O/RM, and
O/R mapping).

15

Iván Sánchez Milara Programmable Web Project. Spring 2020.

SQL vs NoSQL vs NewSQL

16

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Examples - Relational

•Relational databases are still the most commonly used.

•Relational databases are mainly composed by tables.

•A table is formed by zero (empty) or more rows.

•A row consists of one or more fields
– Each has a certain datatype. (columns)

• Some examples are: PostgreSQL, MySQL, SQLite

FirstName Surname PersonalId

John Smith 3321

Jack Johnson 4352

Mary Smith 9807

17

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

18

{

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Examples – Non-relational (I)

• As the usage of many popular sites (Amazon, Facebook, Google)
increased, research on more adequate models to store and retrieve
distributed data became necessary.

• Non-relational databases usually offer better scalability and
performance by not supporting all the functionality
of a generic relational DBMS

• Examples
– Dynamo (Amazon): distributed key-value model
– BigTable (Google): designed to scale a cross multiple servers

• http://research.google.com/archive/bigtable.html
• Index (triplet)-value model

– Cassandra (Facebook): Dynamo implementation
• http://cassandra.apache.org/

– Hbase
– Hypertable (Baidu): Inspired in BigTable
– Hadoop: Distributed storage and processing

19

http://research.google.com/archive/bigtable.html
http://cassandra.apache.org/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

SQL (I)

•SQL (Structured Query Language) is a programming language
for managing data in relational DBMS.

• It was created to access the first version of the relational
database defined by Codd (see slide 13).

•SQL is an ANSI standard from 1986, and an ISO standard from
1987

– http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498

•SQL standard has grown a lot since then.
– Not all DBMSs implement the whole standard but

– They all do implement basic functionality for Data Manipulation
(CRUD) given by the standard commands:

• INSERT (Create)

• SELECT (Read)

• UPDATE (Update)

• DELETE (Destroy)

20

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498

Iván Sánchez Milara Programmable Web Project. Spring 2020.

SQL (II)

•SQL allows Data Definition with statements like
– CREATE Table

– ALTER Table

– DROP Table

•SQL allows Data Control to manage user access with the
commands:

– GRANT (add permissions)

– REVOKE (remove permissions)

21

Iván Sánchez Milara Programmable Web Project. Spring 2020.

SQL (III)

•SQL Query
– Executed using command SELECT

– Retrives data, based on any criteria given by CLAUSES (FROM,
WHERE, ORDER BY)

•Simple SQL statements syntax:
– Usually starts with the desired action – COMMAND

– Then, a CLAUSE with the target

– Finally, a series of CLAUSES may give additional instructions

SELECT FirstName FROM names_table

WHERE Surname = ’Smith’

DELETE * FROM names_table

WHERE Surname = ’Smith’

22

Iván Sánchez Milara Programmable Web Project. Spring 2020.

TRANSPORT PROTOCOL: HTTP

23

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP

• The Hypertext Transfer Protocol (HTTP):

–HTTP communication usually takes place over TCP/IP

connections.

– Most used application protocol in the World Wide Web.

– Also used as a transport protocol for other application protocols,
such as SOAP, XML-RPC …

•HTTP allows bidirectional transfer of resources
representations between client and server.

– Resource: network data object identified by a URI

”an application-level protocol for distributed, collaborative,

hypermedia information systems”
RFC 2616 (http://www.faqs.org/rfcs/rfc2616.html)

24

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP Request parts

• HTTP method.

– Indicates how the client expects the server to process the request.

• Path

– Portion of the URI to the right of the hostname.

– In terms of the envelope metaphor,

the path is the address on the envelope.

• Request headers

– Are key-value pairs of metadata. They are like stickers for the envelope.

– Can include general headers, request specific headers and entity headers

– There’s a standard list of HTTP headers and

applications can define their own.

• Entity-body

– The resource representation.

– For GET, HEAD and DELETE methods, the entity body is empty.

The information needed to complete the request is in the path

and the headers.

25

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP Request parts

•HTTP request example to http://www.cse.oulu.fi

GET / HTTP/1.1

Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The HTTP method. Here, the client
(web browser) is trying to GET some
information from the server
(www.cse.oulu.fi).

The path In this example the

path points to the root of the

host (just /)

REQUEST

LINE

The request headers Since the request does not

have entity, it only contains general and request

specific headers.

The entity-body This particular request has no entity body, which means the envelope is

empty! This is typical for a GET request, where all the information needed to complete the

request is in the path and the headers.

26

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP Response parts (I)

•HTTP response code
– Informs the client about the status of the request process, and how

the client should regard this envelope and its contents.
– 3 digit integer followed by a reason phrase (textual description of

the code)
– Clearly defined by RFC2616

•Response headers
– Same function as the request headers.
– Includes general headers, response specific headers and

entity headers.

•Entity-body
– Is the resource representation.
– The entity-body is the fulfillment of the HTTP request.

27

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP Response parts

•Response Example: http://www.cse.oulu.fi

HTTP/1.1 200 OK
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Date: Wed, 05 Oct 2011 17:26:03 GMT
Server: Apache/2.2.3 (CentOS)
Vary: Cookie,User-Agent,Accept-Language
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering</title>
…

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”).

The response headers: general,

response and entitity headers
STATUS

LINE

The entity-body. In this case, the entity

body is a HTML document representing

a web page.

28

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP Methods

Defined in RFC2616

29

Method Description

GET Returns the resource representation

HEAD Identical to GET except that the server returns only headers
information in the response

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP methods (I)

Defined in RFC2616
• GET

– Retrieves the information (in the form of an entity) identified by the Request-URI.
• Eg. when we access a web site, we get the associated html page.

• HEAD
– Identical to GET except that the server returns only headers information in the

response (no message-body).

• Used for testing hypertext links for validity, accessibility, and recent modifications.
• POST

– Requests that the enclosed entity is stored as a new subordinate of the resource
identified by the Request-URI.

– Example functions:
• Adding annotations to existing resources
• Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
• Providing a block of data, such as the result of a form submit,

to a data-handling process
• Extending a database through an append operation.

30

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP methods (II)

• PUT

– Requests that the enclosed entity is stored under the supplied Request-URI

– Two options:

• If the Request-URI refers to an already existing entity, the enclosed one should
be considered as a modified version of the one residing on the server.

• Otherwise, the origin server creates one entity with that URI.

• DELETE

– Requests that the server delete the resource identified by the Request-URI.

• OPTIONS

– Represents a request for information about the communication options
available on the request / response chain identified by the Request-URI.

• Check which are the methods that a resource supports.

31

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HTTP and REST style

•HTTP protocol conforms with REST style and provides a
stable “transport” protocol for Web service message
exchange.

– HTTP provides client-server communication style

– Provides uniform interface with the HTTP methods

– Is stateless by definition

• It is possible to apply REST concepts to other protocols and
systems

– E.g. Stateless interaction with an FTP site

32

Iván Sánchez Milara Programmable Web Project. Spring 2020.

DATA SERIALIZATION LANGUAGES

33

Iván Sánchez Milara Programmable Web Project. Spring 2020.

JSON and XML

•Formats used for representing data that are heavily used to
share data among heterogeneous peers

– Text format (not binary)

– Language independant

•Although the two of them can be used for M2M and H2M
– XML is more human readable oriented

– JSON is more machine readable oriented

• In the Programmable Web, they are mainly used for data
exchange, although the may be used also for data storage.

34

Iván Sánchez Milara Programmable Web Project. Spring 2020.

JSON

•JavaScript Object Notation

•Based on a subset of the JavaScript Language

•Built on two structures:
– A collection of name/value pairs

– An ordered list of values

•These structures can be mapped to structures in almost any
programming language

•Example

35

{"widget": {

"debug": "on",

"window": {

"title": "Sample Konfabulator Widget",

"name": "main_window",

"width": 500,

"height": 500 }

}}

http://www.json.org

Iván Sánchez Milara Programmable Web Project. Spring 2020.

XML

•Extensible Markup Language
– Markup language: system for annotating a document,

•First intended for data publishing

•Markup based in tags:
<tag>content</tag>

•More info
– Appendix 1: App1_XML_Basics

– http://www.w3.org/XML/

•Example

36

<widget>

<debug>on</debug>

<window title="Sample Konfabulator Widget">

<name>main_window</name>

<width>500</width>

<height>500</height>

</window>

</widget>
(http://www.json.org)

http://www.w3.org/XML/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…)
in a way that all content is connected and accessible to the user.

“Hypertext […] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

• Hypermedia

– Data

– Hypermedia controls. Indicates what actions could I do next, what are the target
resource to perform the action (link) and how can I perform those actions (http
method / response).

37

* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Hypermedia (HTML)

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

38

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Hypermedia (Collection+JSON)

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

39

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATSIN APPENDIX 3: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Hypermedia (XML and JSON)

• XML or JSON as such are not hypermedia (no define hypermedia controls!!!!)

• XML contains some extensions to convert an XML document in hypermedia:
• xlink from http://www.w3.org/1999/xlink

– Define a set of attributes to establish relations

• atom:link from http://www.w3.org/2005/Atom

– XML element to establish relations

• JSON-LD (JSON for Linked Data) is a media type compatible with JSON that
integrates hypermedia controls

– http://json-ld.org/

40

<book title="Harry Potter">

<description xlink:type="simple“ xlink:href="/images/HPotter.gif“ xlink:show="new">

As his fifth year at Hogwarts School of Witchcraft and Wizardry approaches, Harry is ...

</description>

</book>

{ "@context": "http://json-ld.org/contexts/person.jsonld",
"@id": "http://dbpedia.org/resource/John_Lennon",
"name": "John Lennon,
"spouse": "http://dbpedia.org/resource/Cynthia_Lennon" }

http://www.w3.org/1999/xlink
http://www.w3.org/2005/Atom
http://json-ld.org/
http://json-ld.org/contexts/person.jsonld
http://dbpedia.org/resource/John_Lennon
http://dbpedia.org/resource/Cynthia_Lennon

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Pure hypermedia formats

•HAL

•Siren

•Collection + JSON

•Hydra

MORE IN APPENDIX 3: Hypermedia formats

41

Iván Sánchez Milara Programmable Web Project. Spring 2020.

CLIENTS

42

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Types of clients

• Human driven clients
– Decisions made by humans. IMPORTANT: how to represent information

to humans

• Crawlers
– It starts following all links iteratively from certain web, executing an

algorithm for each link followed
– E.g. Google

• Monitors
– Checks the state of a resource periodically
– E.g. RSS aggregator

• Scripts
– Simulate an human repeating a determined set of actions (eg. Accessing

sequentially a list of links).

• Agents
– Try to emulate humans who are actively engaged with a problem. Looks

to representation and take autonomous decisions based on states.

43

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web browser. An Human Driven
client.

•A web browser is the client for ALL websites and web
applications.

•TECHNOLOGIES:
– HTML-> Markup language which defines the content to be rendered by the

browser

– CSS-> Style sheet language used for describing the look and formatting of a
document

– JAVASCRIPT-> Scripting language that listen for events triggered by the
users, the network or the host system and execute predefined actions.

– AJAX-> A set of techniques based on Javascript which enable asynchronous
interaction between a web browser and a server

– WebSocket-> Computer communication protocol over TCP that provides
full-duplex communication. It enables for instance, pub/sub.

44

Iván Sánchez Milara Programmable Web Project. Spring 2020.

How a web browser works?

45

Iván Sánchez Milara Programmable Web Project. Spring 2020.

How a browser works (I) ?

1. The user inserts a URL on the browser address bar
• The browser makes an HTTP GET request to such URL

2. The browser parses the HTTP response
• The body of the response contains an HTML document
• The HTML document might have embedded CSS stylesheets and javascript code

3. The browser transform the HTML document in a tree structure.
– The tree can be access and modified using DOM interface

(http://www.w3.org/DOM/): we refer to this tree as DOM tree.

4. The DOM tree is rendereded by the browser.
• Content is provided by the HTML code while the style is given by the CSS code.
• When the whole DOM is rendered we can say that the webpage has been loaded.

5. Simultaneously the browser retrieves all external files embedded in the
HTML document (images and audio files, external javascript and CSS files
...). Those files are stored in a temporal local storage. The DOM has links
to those files.

46

Iván Sánchez Milara Programmable Web Project. Spring 2020.

How a browser works (II) ?

6. The user interacts with the web page shown on the browser.

• Events are captured and processed by Javascript.

• Javascript can modify asynchronously the DOM tree, and hence
change the content rendered on the browser.

7. Javascript might use AJAX to make asynchronous HTTP
requests.

• HTTP responses are processed and the DOM tree is modified
accorddingly.

• The browser keeps the same DOM tree. Just change the
corresponding nodes.

8. When the user press a link a new website is loaded in the
browser (the process is repeated again).

– The old DOM tree is deleted.

47

Iván Sánchez Milara Programmable Web Project. Spring 2020.

SERVICES AND APIS

48

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web services

• Web services are logical units that provides certain
functionality.

• They are application independent

– services can be used by other services and applications.

– services can incorporate the functionality of other services
(composite service)

Service Service Service

Application Application

Service

49

• Services need to communicate to the service
consumer:

‒ what functionality they provide
‒ which data formats they accept and produce
‒ what protocol they use

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Microservices

•Set of small and autonomous services that work together.
– Business boundaries clear defined -> just a piece of functionality

• The smaller the better -> microservice should be maintained by small
team

– Each microservice runs in its own OS process.
• Change independently of each other

• Must be deploy without a change in the consumer.

•Benefits:
– Technology heterogeneity

– Resilience

– Scaling

– Easy of deployment

– Organizational alignment

– Composability

50

Building microservices. Sam Newman. O’Really Media

Posts
(python)

Friends
(go)

Pictures
(Erlang)

MongoDB Neo4j
(Graph db)

Blob DB

Posts

I1 I2 I3

Friends

I1

Pictures

I1 I2 I3

I4 I5 I6

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web services

•Web services are not prepared to human consumption (in
contrast to websites).

– Web services require an architectural style to provide clear and
unambiguous interaction (clearly defined interfaces), because
there’s no smart human being on the client end to keep track.

51

Iván Sánchez Milara Programmable Web Project. Spring 2020.

APIs and Web APIs

•Application Programming Interfaces

•Defines how the service functionality is exposed by means of
one or more endpoints:

– Protocol semantics

– Application semantics

•Nowadays, web service word is in disuse => We use Web
API instead

52

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web API
53

Business Logic

Web API

PYTHON
CLIENT

HTTP Request

JAVA
CLIENT

SQL/
NoSQL

Database

BROWSER
CLIENT

HTML & CSS

Javascript A
JA

X

HTTP Request

HTTP Request

WEB
SERVICE

HTTP Request

Web Service
Or

Web API

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Website vs Web API

•Gist:
– Github tool that allows sharing code and applications

– Website at: https://gist.github.com/

– API at https://developer.github.com/v3/gists/

– Gist clients: https://gist.github.com/defunkt/370230

• For instance, Sublime Text client: https://github.com/condemil/Gist

54

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web APIs Examples.

• Flickr Web API can be used to retrieve and upload photos from/to
the Flickr sharing service. Pictures can be filtered using multiple
criteria.

https://www.flickr.com/
https://www.flickr.com/services/api/

• Blurb! is a web application that makes easy design, publish, market
and sell professional-quality books.

http://www.blurb.com/flickr

• Glimmr is a Flickr viewer for Android. It uses Flickr API to collect
data.

https://play.google.com/store/apps/details?id=com.bourke.glimmr

• Much more in http://www.programmableweb.com

55

https://www.flickr.com/
https://www.flickr.com/services/api/
http://www.blurb.com/flickr
https://play.google.com/store/apps/details?id=com.bourke.glimmr
http://www.programmableweb.com/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Architectural styles

•RPC

•REST
– CRUD

– Hypermedia (HATEOAS)

•Pub/Sub (Asynchronous Event-Based Collaboration)

56

Iván Sánchez Milara Programmable Web Project. Spring 2020.

RPC-style Web APIs

•RPC: Remote procedure call
– A method or subroutine is executed in another address space,

without the programmer explicitly encoding the details of the
remote interaction.

•An RPC-style Web API accepts an envelope full of data from
its client, and sends a similar envelope back.

– The method and the scoping information are kept inside the
envelope, or on stickers applied to the envelope.

•Every RPC-style Web API defines a brand new vocabulary:
method name, method parameters

•Some examples:
– XML-RPC

– SOAP.

57

Iván Sánchez Milara Programmable Web Project. Spring 2020.

RPC

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

58

Iván Sánchez Milara Programmable Web Project. Spring 2020.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation
.pdf

– Does not define an architecture but requirements for the
architecture

•Representation
– Resource-oriented: operates with resources.

• Resource: Any piece of information that
can be named. Identified generally by URL

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

– UNIFORM interface

59

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2020.

REST APIs

•CRUD
– Most extended approach. Majority of Web APIs nowadays

– Not follow strictly REST principles

• More on this next lecture

•Hypermedia
– Follows strictly REST principles

60

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Twitter API

61

https://developer.twitter.com/en/docs.html

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Pub / Sub

•Some services emit events (user entered the room)

•Some services are subscribed to those events
– When the publisher publish the events the subscriber receives the

event

•Generally a broker is in charge of coordination:
– Producers publish event to the broker

– Broker handle subscriptions and inform when an event arrives

•Complex solution BUT creates effective loosely-couple
solutions.

62

Iván Sánchez Milara Programmable Web Project. Spring 2020.

GraphQL

•Mixed of RPC and REST API concepts
– Created by Facebook.

•GraphQL is a query language APIs, and a server-side runtime
for executing queries by using a type system defined for the
data.

63

https://graphql.org/
https://graphql.org/learn/queries/

https://graphql.org/
https://graphql.org/learn/queries/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

What about current Web APIs (RPC
or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

• Integrating a new API inevitably requires writing custom
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

64

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)

– Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

– A client can be implemented using any programming language
• Data is encapsulated and transmitted using any serialization languages

such asJSON, XML, HTML, YAML

65

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Hypermedia driven Web APIs

• Follows strictly Fielding dissertation principles.
– REST APIs must be hypertext driven:

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

• Uses Hypermedia as the Engine of the Application State
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

• Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

• Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

66

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

