
Iván Sánchez Milara Programmable Web Project. Spring 2020.

Programmable Web Project
Part 2: Programmable Web

Spring 2020

• Services and APIs

• RESTful Web APIs and HATEOAS

Iván Sánchez Milara Programmable Web Project. Spring 2020.

SERVICES AND APIS

2

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web services

• Web services are logical units that provides certain
functionality.

• They are application independent

– services can be used by other services and applications.

– services can incorporate the functionality of other services
(composite service)

Service Service Service

Application Application

Service

3

• Services need to communicate to the service
consumer:

‒ what functionality they provide
‒ which data formats they accept and produce
‒ what protocol they use

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Microservices

•Set of small and autonomous services that work together.
– Business boundaries clear defined -> just a piece of functionality

• The smaller the better -> microservice should be maintained by small
team

– Each microservice runs in its own OS process.
• Change independently of each other

• Must be deploy without a change in the consumer.

•Benefits:
– Technology heterogeneity

– Resilience

– Scaling

– Easy of deployment

– Organizational alignment

– Composability

4

Building microservices. Sam Newman. O’Really Media

Posts
(python)

Friends
(go)

Pictures
(Erlang)

MongoDB Neo4j
(Graph db)

Blob DB

Posts

I1 I2 I3

Friends

I1

Pictures

I1 I2 I3

I4 I5 I6

Iván Sánchez Milara Programmable Web Project. Spring 2020.

APIs and Web APIs

•Application Programming Interfaces

•Defines how the service functionality is exposed by means of
one or more endpoints:

– Protocol semantics

– Application semantics

•Nowadays, web service word is in disuse => We use Web
API instead

6

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web API
7

Business Logic

Web API

PYTHON
CLIENT

HTTP Request

JAVA
CLIENT

SQL/
NoSQL

Database

BROWSER
CLIENT

HTML & CSS

Javascript A
JA

X

HTTP Request

HTTP Request

WEB
SERVICE

HTTP Request

Web Service
Or

Web API

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Website vs Web API

•Gist:
– Github tool that allows sharing code and applications

– Website at: https://gist.github.com/

– API at https://developer.github.com/v3/gists/

– Gist clients: https://gist.github.com/defunkt/370230

• For instance, Sublime Text client: https://github.com/condemil/Gist

8

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Architectural styles

•RPC

•REST
– CRUD

– Hypermedia (HATEOAS)

•Pub/Sub (Asynchronous Event-Based Collaboration)

10

Iván Sánchez Milara Programmable Web Project. Spring 2020.

RPC

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

12

Iván Sánchez Milara Programmable Web Project. Spring 2020.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

13

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2020.

REST APIs

•CRUD
– Most extended approach. Majority of Web APIs nowadays

– Not follow strictly REST principles

• More on this next lecture

•Hypermedia
– Follows strictly REST principles

14

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Twitter API

15

https://developer.twitter.com/en/docs.html

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Pub / Sub

•Some services emit events (user entered the room)

•Some services are subscribed to those events
– When the publisher publish the events the subscriber receives the

event

•Generally a broker is in charge of coordination:
– Producers publish event to the broker

– Broker handle subscriptions and inform when an event arrives

•Complex solution BUT creates effective loosely-couple
solutions.

16

Iván Sánchez Milara Programmable Web Project. Spring 2020.

GraphQL

•Mixed of RPC and REST API concepts
– Created by Facebook.

•GraphQL is a query language APIs, and a server-side runtime
for executing queries by using a type system defined for the
data.

17

https://graphql.org/
https://graphql.org/learn/queries/

https://graphql.org/
https://graphql.org/learn/queries/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

What about current Web APIs (RPC
or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

• Integrating a new API inevitably requires writing custom
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

18

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)

– Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

– A client can be implemented using any programming language
• Data is encapsulated and transmitted using any serialization languages

such asJSON, XML, HTML, YAML

19

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Programmable Web

21

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One client

Programmable Web:
• Targeted to machines
• Heterogeneous clients

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2020

• ROA Principles

• RESTful Web APIs

• Designing RESTful Web APIs

• Resource Oriented design vs
hypermedia driven design

Iván Sánchez Milara Programmable Web Project. Spring 2020.

INTRODUCTION TO ROA

24

Iván Sánchez Milara Programmable Web Project. Spring 2020.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

25

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2020.

ROA Introduction

•Resource Oriented Architecture (ROA)

– Architecture for creating Web APIs

– It conforms the REST design principles

– Base technologies: URLs, HTTP and Hypermedia

•Resource :

– Anything important enough to be referenced as a thing itself
• For example: List of the libraries of the city of Oulu, the last software version of

Windows, the relation between two friends, the result of factorizing a number

• Each resource is identified by a unique identifier

•We operate with resources representations by means of

HTTP Requests

– Retrieve or manipulate the state of the resource

28

Iván Sánchez Milara Programmable Web Project. Spring 2020.

ROA pillars

29

Four properties:

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Forum Resource hierarchy

30

forum

CategoryUser

Name

Description

Thread
Name

FirstName LastName Message

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Addressability

•Exposes the interesting aspects of its data set as resources

– Each resource is exposed using its URI

– The URI can be copied, pasted and distributed

– Example:
•http://forum.com/users/user1 refers to the information of

the user of the Forum

• I can send this URI by email, and the receiver can access this
information by copying this URI into his/her browser

31

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Addressability in WWW

•The WWW is addressable

32

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Uniform interface (I)

•Every API uses the same methods with the same meanings
– Without a uniform interface, clients have to learn how each API is expected

to get and send information

•ROA uses uniform interface provided by HTTP to act over the
resource provided in the URI

33

Method Description

GET Returns the resource representation

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Uniform interface (II)

•PATCH http://tools.ietf.org/html/rfc5789

– Partial edition/modification of a resource

• Client and server must agree on a new media type for patch
documents

– RFC 6902: proposed standard patch format for JSON.

• Send a diff of the resource representation. Changes to be done to the
resource.

• Content-Type: application/json-patch+json

• [{ "op": "remove", "path": "/a/b/c" }, { "op": "add", "path": "/a/b/c",

"value": ["foo", "bar"] }, { "op": "replace", "path": "/a/b/c",

"value": 42 }]

35

http://tools.ietf.org/html/rfc5789

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Uniform interface (III)

• URI: http://forum.com/messages/msg-3

– GET: Retrieves this representation

– DELETE: Removes the message with id «msg-3» from the server

– PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderIP, and Registered
could be modified and MUST be included in the request body (The complete
representation is sent and it replaces the old one)

– POST: Add a response to the message with id «msg-3» (subordinate resource). The
body of the request should include the new message

36

<msg:Message messageID="msg-3">

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi Markkanen used to play before

he came to Edmonton Oilers? He was excellent in the Stanley Cup finals

last season! Too bad they lost...</msg:Body>

<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>

<msg:SenderIP>217.119.25.162</msg:SenderIP>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Uniform interface in WWW

•Only GET and POST supported in HTML

•Rest of HTTP methods supported through Javascript

37

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Statelessness (I). State concept.

•Resource state:
– A resource representation that is exchanged between server and

client

– Same for all the clients making simultaneous requests

–Lives in the server

•Application state:
– Snapshot of the entire system at a particular instant, including past

actions and possible future state transitions

– Future possible application states are informed in the resource
representation sent by the server.

– Lives in the client

STATLESSNESS => REFERS TO APPLICATION STATE

38

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Statelessness (II)

•Every HTTP request happens in complete isolation
(STATELESS)

– Server never operates based on information from previous
requests, SERVER DOES NOT STORE APPLICATION STATE

• Eg: In a photo album application if I am in “picture 3” I cannot
request the “next picture” but “picture 4”

– Server considers each client request in isolation and in terms
of the current resource state. However it provides information
on which are the future states.

– Client handles the application workflow

39

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Statelessness in WWW

•Originally the WWW is statless
– GET an URL always should return same website

•Multiple applications needs state information (login, last
accessed, visited pages)

– Cookies

– Session id in URL

40

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Connectedness (I)

•Resource representation MUST contain links to other
resources

•Links must include
– The relation among resources

– Optionally, information on how to access linked resources

41

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Connectedness (II)

42

<msg:Thread>

<msg:Message messageID="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-3"></atom:link>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

<msg:Message messageID="msg-7" replyTo="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-7"/>

<msg:Title>History</msg:Title>

<atom:link rel="http://forum/rels/parent-message"

href="http://forum/messages/msg-3"/>

<msg:Registered userID="user-1">

<user:Nickname>Mystery</user:Nickname>

<user:Avatar file="avatar_1.png"/>

<atom:link rel="self" href="http://forum/users/Mistery"/>

</msg:Registered>

</msg:Message>

</msg:Thread>

A representation of the message with
id «msg-3»

A representation of user with
nickname «HockeyFan»

A representation of the parent
message of «msg-7»

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Connectedness in WWW

•WWW is connected
– Access and modification of any resource state: following links or filling forms

43

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"

method="post">

<input type="text" name="message" value=""

required="true" />

<input type="submit" value="Post" />

</form>

Iván Sánchez Milara Programmable Web Project. Spring 2020.

RESTFUL WEB APIS.
HYPERMEDIA.

44

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HATEOAS

48

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HATEOAS

49

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HATEOAS

50

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HATEOAS
Hypermedia formats contain:

•Data

•Hypermedia controls
– The URI of the associated resource (link)

– The relation between both resources

– Usually, protocol information:

• Which method I need to execute to
access / modify the target resource?

• What is the format of the request body?

• …

51

entities" : [

{ "class" : ["switch"],

"href" : "/switches/4",

"rel" : ["item"],

"properties" : { "position" : ["up"] },

"actions" : [

{ "name" : "flip",

"href" : "/switches/4",

"title" : "Flip the mysterious

switch.",

"method": "POST"

}

]

}

]

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HATEOAS

Hypermedia As The Engine Of Application State

• Ideally, client just need the entry point to a service
– The rest of the URIs (resources) are discovered through the hypermedia

controls

• Workflow always informed from the server using the hypermedia controls

– RESOURCES AS STATE IN A MACHINE DIAGRAM

•Well designed RESTful APIs permit modifying the server
architecture (e.g. URL structure) and data model without
breaking the clients

52

R

R

R R

R

R

R R

Iván Sánchez Milara Programmable Web Project. Spring 2020.

HATEOAS

53

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage with them
without dictating any goals

Which are the hypermedia controls?

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Semantic challenge (I)

• In WWW browser does not understand problems domain.
– Humans process information coming from the server and decide on

future actions

• In M2M this is not possible:
– Machines NEED to understand the problem domain

– How can we program a computer to make the decisions about
which links to follow?

•This is the biggest challenge in web API design using
hypermedia: bridging the semantic gap between
understanding a document’s structure and understanding
its semantics.

54

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Semantic Challenge (II)
Semantic gap

•The gap between the structure of a document and its real-
world meaning

Protocol semantics
– What kind of actions a client can perform?

– Usually solved using hypermedia control

Application semantics
– How the representation is explained in terms of real world concepts.

– Same word might have different meanings in different contexts.
• E.g. time:

– Preparation time if we are using a recipe book

– Workout duration if we are building a gym agenda

– Time of the day if we are using a calendar

55

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Semantic challenge (III)

Two ways of communicating semantics to the client

56

Media Types Profiles

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Media types

•Defines the format of the message

•Sometimes include protocol and application semantics

•There are some general purpose media types with
hypermedia support:

– Allows defining the protocol semantics and application
semantics in the API

– HAL, HTML, SIREN, MASON

57

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Media types

58

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

<users>

<user>

<nickname>Axel</nickname>

</user>

<user>

<nickname>Bob</nickname>

</user>

</users>

{users:[

user:{nickname:”Axel},

user:{nickname:”Bob”}

]}

”Axel”

”Bob”

http://myapp/users/axel
http://myapp/users/bob

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Media Types: Collection+JSON

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

59

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Mason

• Mime-type: application/vnd.mason+json
• Link: https://github.com/JornWildt/Mason

{”name”: ”eeyore”,

”color”: ”grey”

"@controls": {

"self": {

"href": "http://api.example.org/donkey/eeyore"

},

"dk:mood": {

"title": "Change mood",

"href": "http://api.example.org/donkey/eeyore/mood",

"method": "PUT",

"encoding": "json",

"schema": {

"type": "object",

"properties": {

"Mood": {"type": "string"},

"Reason": {"type": "string"}

}

}

}

}

60

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

https://github.com/JornWildt/Mason

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Profile

•Explains the document semantics that are not covered by its
media type.

• A profile describes the exact meaning of each semantic
descriptor

Jenny Gallegos

– “A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics[…] associated with the resource
representation, in addition to those defined by the media type”
[RFC 6906]

61

• It is provided to the cliente either defined in a text
document or using a specific description language: ALPS,
JSON-LD, RDF-Schema, XMDP

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Twitter API

62

https://developer.twitter.com/en/docs.html

Iván Sánchez Milara Programmable Web Project. Spring 2020.

63

https://apisyouwonthate.com/blog/rest-
and-hypermedia-in-2019

https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019

Iván Sánchez Milara Programmable Web Project. Spring 2020.

CLIENTS

64

Iván Sánchez Milara Programmable Web Project. Spring 2020.

65

Spreadsheets are general purposes clients, ’canvas’ for
creating all sort of solutions

Our goal is to build clients, in which the workflow is not fully
hardcode but build upon the information send by the server

• Clients that do not memorize solution ahead of time
• Are able to adapt to new possible actions as the service

presents them
• Are able to adapt to changes in the URLs

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Summary

• REST APIs must be hypertext driven according to Fielding:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

• HATEOAS
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

• Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

• Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

66

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Iván Sánchez Milara Programmable Web Project. Spring 2020.

DESIGN OF RESTFUL WEB APIS
USING ROA

67

Iván Sánchez Milara Programmable Web Project. Spring 2020.

RESTful Web services design steps
68

1. Figure out the data set

2. Split the data set into resources

➢ Create Hierachy

3. Name the resources with URIs

4. Establish the relations and possible actions among resources

5. Expose a subset of the uniform interface

6. Design the resource representations using hypermedia formats
1. Define the media types

2. Define the profiles

7. Define protocol specific attributes
➢ E.g. Headers, response code

8. Consider error conditions: What might go wrong?

Iván Sánchez Milara Programmable Web Project. Spring 2020.

Hypermedia driven APIs examples

•Skype for business:
– https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

•Paypal is promoting the use of Hypermedia in their REST API:
– https://developer.paypal.com/docs/api/overview/

– https://developer.paypal.com/docs/integration/direct/paypal-rest-
payment-hateoas-links/

•Amazon AppStream:
– http://docs.aws.amazon.com/appstream/latest/developerguide/api

-reference.html

•Foxycart:
– https://api.foxycart.com/docs#

•Zalando:
– http://zalando.github.io/restful-api-guidelines/index.html

102

https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

