
Iván Sánchez Milara Programmable Web Project. Spring 2024.

Programmable Web Project
Part 1: Introduction

Spring 2024

Services and APIs

The World Wide Web

Technologies for the World Wide Web
• Backend: Business logic + data storage (databases)

• Transport protocol: HTTP

• Data serialization languages

• Clients

Programmable Web

Iván Sánchez Milara Programmable Web Project. Spring 2024.

SERVICES AND APIS

2

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web Services

• Web services are logical units that provides certain
functionality.

• They are application independent

– services can be used by other services and applications.

– services can incorporate the functionality of other services
(composite service)

Service Service Service

Application Application

Service

3

• Services need to communicate to the service
consumer:

‒ what functionality they provide
‒ which data formats they accept and produce
‒ what protocol they use

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web Services

https://jsonplaceholder.typicode.com/

4

https://jsonplaceholder.typicode.com/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web Services

• Online services that are not prepared to human consumption (in
opposite to websites), but mainly machine-to-machine
communication.

–Web services require an architectural style to provide clear and unambiguous
interaction (clearly defined interfaces), because there’s no smart human being
on the client end to keep track.

5

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Microservices

•Set of small and autonomous services that work together.

•SRP -> SINGLE RESPONSIBILITY PRINCIPLE
– Business boundaries clear defined -> just a piece of functionality

– Each microservice runs in its own OS process.

• Change independently of each other

•Benefits:
– Technology heterogeneity

– Resilience

– Scaling

– Easy of deployment

– Organizational alignment

– Composability

6

Building microservices. Sam Newman. O’Really Media

Posts
(python)

Friends
(go)

Pictures
(Erlang)

MongoDB Neo4j
(Graph db)

Blob DB

Posts

I1 I2 I3

Friends

I1

Pictures

I1 I2 I3

I4 I5 I6

Iván Sánchez Milara Programmable Web Project. Spring 2024.

APIs and Web APIs

•API = Application Programming Interfaces

•Defines how the service functionality is exposed by means of one or more
endpoints:

– Protocol semantics

– Application semantics

•Nowadays, web service word is in disuse => We use Web API instead

7

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web API
8

Business Logic

Web API

PYTHON
CLIENT

HTTP Request

JAVA
CLIENT

SQL/
NoSQL

Database

BROWSER
CLIENT

HTML & CSS

Javascript A
JA

X

HTTP Request

HTTP Request

WEB
SERVICE

HTTP Request

Web Service
Or

Web API

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Website vs Web API

•Gist:
– Github tool that allows sharing code and applications

– Website at: https://gist.github.com/

– API at https://developer.github.com/v3/gists/

– Gist clients: https://gist.github.com/defunkt/370230

• For instance, Sublime Text client: https://github.com/condemil/Gist

9

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web APIs Examples.

• Flickr Web API can be used to retrieve and upload photos from/to
the Flickr sharing service. Pictures can be filtered using multiple
criteria.

https://www.flickr.com/
https://www.flickr.com/services/api/

• Blurb! is a web application that makes easy design, publish, market
and sell professional-quality books.

http://www.blurb.com/flickr

• Glimmr is a Flickr viewer for Android. It uses Flickr API to collect
data.

https://play.google.com/store/apps/details?id=com.bourke.glimmr

• Much more in http://www.programmableweb.com

10

https://www.flickr.com/
https://www.flickr.com/services/api/
http://www.blurb.com/flickr
https://play.google.com/store/apps/details?id=com.bourke.glimmr
http://www.programmableweb.com/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST AND HYPERMEDIA

11

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Architectural styles

12

• CRUD

• Hypermedia (HATEOAS)

REST

• SOAP

• GraphQL

RPC

Pub/Sub (Asynchronous Event-Based Collaboration)

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST (Representational State Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation
.pdf

– Does not define an architecture but requirements for the
architecture

•Representation
– Resource-oriented: operates with resources.

• Resource: Any piece of information that
can be named. Identified generally by URL

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

– UNIFORM interface

13

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST (Representational State Transfer)

I want to know the
content of the page 1 of
the notebook.

14

API
architectures:

• RPC
• REST

1

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST (Representational State Transfer)

I want to edit the content
of the page 1 of the
notebook

15

API
architectures
for services:

• RPC
• REST
• Pub/sub

1

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST (Representational State Transfer)

I want to tear off the
page 1 of the
notebook.

16

API
architectures:

• RPC
• REST

1

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST (Representational State Transfer)

I want start writing in a
different page of the
notebook

17

2

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Instagram API

18

https://developers.facebook.com/docs/instagram-api/

e.g. Comment Moderation: https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

https://developers.facebook.com/docs/instagram-api/
https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST APIs

19

• Most extended approach.

• Most of Web APIs nowadays

• Not follow strictly REST principles

CRUD

• Follows strictly REST principles

Hypermedia

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia driven Web APIs

• Follows strictly Fielding dissertation principles.
– REST APIs must be hypertext driven:

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

• Uses Hypermedia as the Engine of the Application State
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

• Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

• Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

20

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RPC

21

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RPC-style Web APIs

•RPC: Remote procedure call
– A method or subroutine is executed in another address space,

without the programmer explicitly encoding the details of the
remote interaction.

•An RPC-style Web API accepts an envelope full of data from
its client, and sends a similar envelope back.

– The method and the scoping information are kept inside the
envelope, or on stickers applied to the envelope.

22

Dear Mr Sanchez:

We would need the list of grades of the

course PWP for year 2022 and 2023.

Please, send them in an Excel file wit the

following info:

The secretaries.

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RPC-style Web APIs

•Every RPC-style Web API defines a brand new vocabulary: method
name, method parameters

•Some examples:

–XML-RPC

–SOAP

–gRPC

23

https://grpc.io/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RPC

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

24

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GraphQL

•Mixed of RPC and REST API concepts
– Created by Facebook.

•GraphQL is a query language APIs, and a server-side runtime for executing queries
by using a type system defined for the data.

25

https://graphql.org/
https://graphql.org/learn/queries/

https://graphql.org/
https://graphql.org/learn/queries/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GraphQL

26

https://www.altexsoft.com/blog/engineering/graph
ql-core-features-architecture-pros-and-cons/

https://www.altexsoft.com/blog/engineering/graphql-core-features-architecture-pros-and-cons/
https://www.altexsoft.com/blog/engineering/graphql-core-features-architecture-pros-and-cons/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RPC TECHNOLOGIES EXAMPLES
GRPC

27

Iván Sánchez Milara Programmable Web Project. Spring 2024.

OLD SOAP WEB SERVICES

28

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Body>

<m:getUserFirstName xmlns:m="http://service.forum.rsi.isg.oulu.fi">
<m:userId>user-3</m:userId>

</m:getUserFirstName>
</soap:Body>
</soap:Envelope>

REQUEST

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
 <getUserFirstNameResponse xmlns="http://service.forum.rsi.isg.oulu.fi">
 <getUserFirstNameReturn>Axel</getUserFirstNameReturn>
 </getUserFirstNameResponse>
</soap:Body>
</soap:Envelope>

RESPONSE

Iván Sánchez Milara Programmable Web Project. Spring 2024.

WSDL

29

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC intro

30

• Based on Protocol Buffers
– Google technology for serializing data structures

https://grpc.io/docs/what-is-grpc/introduction/

https://developers.google.com/protocol-buffers/docs/overview
https://grpc.io/docs/what-is-grpc/introduction/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC. Proto

31

syntax = "proto3";

enum BookCategory {
 MYSTERY = 0;
 SCIENCE_FICTION = 1;
 SELF_HELP = 2;
}

message RecommendationRequest {
 int32 user_id = 1;
 BookCategory category = 2;
 int32 max_results = 3;
}

message BookRecommendation {
 int32 id = 1;
 string title = 2;
}

message RecommendationResponse {
 repeated BookRecommendation recommendations = 1;
}

service Recommendations {
 rpc Recommend (RecommendationRequest) returns (RecommendationResponse);
}

Compiled to
programming

language
structure
(objects)

https://realpython.com/python-microservices-grpc/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC. Server

32

class RecommendationService(recommendations_pb2_grpc.RecommendationsServicer):
def Recommend(self, request, context):

if request.category not in books_by_category:
context.abort(grpc.StatusCode.NOT_FOUND, "Category not found")

books_for_category = books_by_category[request.category]
num_results = min(request.max_results, len(books_for_category))
books_to_recommend = random.sample(

books_for_category, num_results
)

return RecommendationResponse(recommendations=books_to_recommend)

https://realpython.com/python-microservices-grpc/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC. Client

33

https://realpython.com/python-microservices-grpc/

>>> channel = grpc.insecure_channel("localhost:50051")
>>> client = RecommendationsStub(channel)
>>> request = RecommendationRequest(
... user_id=1, category=BookCategory.SCIENCE_FICTION, max_results=3
...)
>>> client.Recommend(request)

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Types of service methods

• Unary: the client sends a single request to the server and gets a single

response back, just like a normal function call.

• Server streaming RPCs: client sends a request to the server and
gets a stream to read a sequence of messages back.

– The client reads from the returned stream until there are no more messages.

– gRPC guarantees message ordering within an individual RPC call.

• Client streaming RPCs: the client writes a sequence of messages
and sends them to the server, again using a provided stream

– Once the client has finished writing the messages, it waits for the server to read them
and return its response.

– gRPC guarantees message ordering within an individual RPC call.

• Bidirectional streamming RPCs: Mix of two previous.

34

Iván Sánchez Milara Programmable Web Project. Spring 2024.

PUB/SUB

35

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Pub / Sub

•Some services emit events (user entered the room)

•Some services are subscribed to those events
– When the publisher publish the events the subscriber receives the event

•Generally a broker is in charge of coordination:
– Producers publish event to the broker

– Broker handle subscriptions and inform when an event arrives

•Complex solution BUT creates effective loosely-couple solutions.

•E.g. mqtt, rabitmq …

36

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Pub / Sub

37

Let me know when
a student use the

3D printer OKMe too

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Pub / Sub

38

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Pub / Sub

39

Instructor 1, Matti wants to
3D print right now

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Pub / Sub

40

Instructor 2, Matti wants to
3D print right now

Iván Sánchez Milara Programmable Web Project. Spring 2024.

The World Wide Web

41

Iván Sánchez Milara Programmable Web Project. Spring 2024.

What is the World Wide Web?

https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1

42

https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1
https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1

Iván Sánchez Milara Programmable Web Project. Spring 2024.

What is the World Wide Web?

•Human consumption (H2M)

•Hypertext

•Uniform API and technologies

•Single client (Web browser)

43

Goal: Distribute data

Iván Sánchez Milara Programmable Web Project. Spring 2024.

World Wide Web success. Scalability

Web is distributed

Web is massively decoupled

Web is dynamic

44

Source (2024) https://www.domo.com/data-never-
sleeps

https://www.domo.com/data-never-sleeps
https://www.domo.com/data-never-sleeps

Iván Sánchez Milara Programmable Web Project. Spring 2024.

How the WWW works?

http://www.youtypeitwepostit.com/

45

http://www.youtypeitwepostit.com/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

TECHNOLOGIES FOR THE WWW

•Backend: Business logic + data storage (databases)

•Transport protocol: HTTP

•Data serialization languages

•Clients

46

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Client server model

47

© David Vignoni LGPL license
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg

Iván Sánchez Milara Programmable Web Project. Spring 2024.

BACKEND

48

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Backend

•Stores application data persistently

–DATABASE

•Defines how to process request from the client and process the data
according to the requests coming from the client

–BUSINESS LOGIC

•Expose the data using a defined API

49

Iván Sánchez Milara Programmable Web Project. Spring 2024.

DATABASES

50

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Definition

•Databases emerged to solve challenges of storing and managing
huge amounts of data

•A database:
– is a data structure

– stores organized information

– can be easily accessed, managed and updated

•DBMS (Database Managing System) is the software that allows
creating, managing and storing database structures.

– Responsible for data integrity, recovery and access

– Provides a way for extract or modify the data

•There are different ways to model the data in the database
– Lately divided into relational models and non-relational models

51

Iván Sánchez Milara Programmable Web Project. Spring 2024.

ACID properties

•Atomicity
– Each transaction is atomic.

– If one part of the transaction fails the whole transaction fails and the database is not
modified.

•Consistency
– Databases moves from one valid state to another valid state in each transaction.

– A state is valid if meets all the constraints

• Isolation
– Concurrent access is processed as serial access.

– Not completed transactions might not be visible to other users

•Durability
– Once a transaction is committed it remains in the db.

52

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Relational – Non-relational

•Relational:
– Database model developed by E.F. Codd in 1970

• Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared
Data Banks"

– Data is represented in terms of tuples (rows), grouped into relations
(tables) that can be linked with each other.

– Developed almost in parallel with SQL language

•Non-Relational:
– Sometimes miscalled Non SQL databases

– Umbrella that gathers different databases that are not relational.

– Data is not organized in related tables.

• Some store objects, some store key-value pairs,
some store documents

– More flexible and scalable

53

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RDBMS Concepts

•CRUD
– Databases stores data persistently

– There are four basic functions to manage persistent data:

• Create

• Read

• Update

• Delete

•ORM (Object relational mapping)
– To access a relational database from an object oriented language context (PHP, Python,

Java…)

• interface translating relational logic to objects logic is needed.

• Such interface is called Object-relational mapping (ORM, O/RM, and O/R mapping).

54

Iván Sánchez Milara Programmable Web Project. Spring 2024.

SQL vs NoSQL vs NewSQL

55

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Examples - Relational

•Relational databases are still the most commonly used.

•Relational databases are mainly composed by tables.

•A table is formed by zero (empty) or more rows.

•A row consists of one or more fields
– Each has a certain datatype. (columns)

• Some examples are: PostgreSQL, MySQL, SQLite

FirstName Surname PersonalId

John Smith 3321

Jack Johnson 4352

Mary Smith 9807

56

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

57

{

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Examples – Non-relational (I)

• As the usage of many popular sites (Amazon, Facebook, Google)
increased, research on more adequate models to store and retrieve
distributed data became necessary.

• Non-relational databases usually offer better scalability and
performance by not supporting all the functionality
of a generic relational DBMS

• Examples
– Dynamo (Amazon): distributed key-value model
– BigTable (Google): designed to scale a cross multiple servers

• http://research.google.com/archive/bigtable.html
• Index (triplet)-value model

– Cassandra (Facebook): Dynamo implementation
• http://cassandra.apache.org/

– Hbase
– Hypertable (Baidu): Inspired in BigTable
– Hadoop: Distributed storage and processing

58

http://research.google.com/archive/bigtable.html
http://cassandra.apache.org/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

SQL (I)

•SQL (Structured Query Language) is a programming language
for managing data in relational DBMS.

• It was created to access the first version of the relational
database defined by Codd (see slide 13).

•SQL is an ANSI standard from 1986, and an ISO standard from
1987

– http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498

•SQL standard has grown a lot since then.
– Not all DBMSs implement the whole standard but

– They all do implement basic functionality for Data Manipulation
(CRUD) given by the standard commands:

• INSERT (Create)

• SELECT (Read)

• UPDATE (Update)

• DELETE (Destroy)

59

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45498

Iván Sánchez Milara Programmable Web Project. Spring 2024.

SQL (II)

•SQL allows Data Definition with statements like
– CREATE Table

– ALTER Table

– DROP Table

•SQL allows Data Control to manage user access with the commands:
– GRANT (add permissions)

– REVOKE (remove permissions)

60

Iván Sánchez Milara Programmable Web Project. Spring 2024.

SQL (III)

•SQL Query
– Executed using command SELECT

– Retrives data, based on any criteria given by CLAUSES (FROM, WHERE, ORDER BY)

•Simple SQL statements syntax:
– Usually starts with the desired action – COMMAND

– Then, a CLAUSE with the target

– Finally, a series of CLAUSES may give additional instructions

SELECT FirstName FROM names_table

WHERE Surname = ’Smith’

DELETE * FROM names_table

WHERE Surname = ’Smith’

61

Iván Sánchez Milara Programmable Web Project. Spring 2024.

TRANSPORT PROTOCOL: HTTP

62

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP

• The Hypertext Transfer Protocol (HTTP):

–HTTP communication usually takes place over TCP/IP connections.

– Most used application protocol in the World Wide Web.

– Also used as a transport protocol for other application protocols, such as SOAP, XML-RPC …

•HTTP allows bidirectional transfer of resources representations between client

and server.

– Resource: network data object identified by a URI

”an application-level protocol for distributed, collaborative,

hypermedia information systems”
RFC 2616 (http://www.faqs.org/rfcs/rfc2616.html)

63

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Request parts

• HTTP method.

– Indicates how the client expects the server to process the request.

• Path

– Portion of the URI to the right of the hostname.

– In terms of the envelope metaphor,

the path is the address on the envelope.

• Request headers

– Are key-value pairs of metadata. They are like stickers for the envelope.

– Can include general headers, request specific headers and entity headers

– There’s a standard list of HTTP headers and

applications can define their own.

• Entity-body

– The resource representation.

– For GET, HEAD and DELETE methods, the entity body is empty.

The information needed to complete the request is in the path

and the headers.

64

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Request parts

•HTTP request example to http://www.cse.oulu.fi

GET / HTTP/1.1

Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The HTTP method. Here, the client
(web browser) is trying to GET some
information from the server
(www.cse.oulu.fi).

The path In this example the

path points to the root of the

host (just /)

REQUEST

LINE

The request headers Since the request does not

have entity, it only contains general and request

specific headers.

The entity-body This particular request has no entity body, which means the envelope is

empty! This is typical for a GET request, where all the information needed to complete the

request is in the path and the headers.

65

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Response parts (I)

•HTTP response code
– Informs the client about the status of the request process, and how the client should regard

this envelope and its contents.
– 3 digit integer followed by a reason phrase (textual description of the code)
– Clearly defined by RFC2616

•Response headers
– Same function as the request headers.
– Includes general headers, response specific headers and

entity headers.

•Entity-body
– Is the resource representation.
– The entity-body is the fulfillment of the HTTP request.

66

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Response parts

•Response Example: http://www.cse.oulu.fi

HTTP/1.1 200 OK
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Date: Wed, 05 Oct 2011 17:26:03 GMT
Server: Apache/2.2.3 (CentOS)
Vary: Cookie,User-Agent,Accept-Language
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering</title>
…

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”).

The response headers: general,

response and entitity headers
STATUS

LINE

The entity-body. In this case, the entity

body is a HTML document representing

a web page.

67

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Methods

Defined in RFC2616

68

Method Description

GET Returns the resource representation

HEAD Identical to GET except that the server returns only headers
information in the response

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP methods (I)

Defined in RFC2616
• GET

– Retrieves the information (in the form of an entity) identified by the Request-URI.
• Eg. when we access a web site, we get the associated html page.

• HEAD
– Identical to GET except that the server returns only headers information in the

response (no message-body).

• Used for testing hypertext links for validity, accessibility, and recent modifications.
• POST

– Requests that the enclosed entity is stored as a new subordinate of the resource
identified by the Request-URI.

– Example functions:
• Adding annotations to existing resources
• Posting a message to a bulletin board, newsgroup, mailing list,

or similar group of articles
• Providing a block of data, such as the result of a form submit,

to a data-handling process
• Extending a database through an append operation.

69

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP methods (II)

• PUT

– Requests that the enclosed entity is stored under the supplied Request-URI

– Two options:

• If the Request-URI refers to an already existing entity, the enclosed one should
be considered as a modified version of the one residing on the server.

• Otherwise, the origin server creates one entity with that URI.

• DELETE

– Requests that the server delete the resource identified by the Request-URI.

• OPTIONS

– Represents a request for information about the communication options
available on the request / response chain identified by the Request-URI.

• Check which are the methods that a resource supports.

70

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP and REST style

•HTTP protocol conforms with REST style and provides a stable “transport”
protocol for Web service message exchange.

– HTTP provides client-server communication style

– Provides uniform interface with the HTTP methods

– Is stateless by definition

• It is possible to apply REST concepts to other protocols and systems
– E.g. Stateless interaction with an FTP site

71

Iván Sánchez Milara Programmable Web Project. Spring 2024.

DATA SERIALIZATION LANGUAGES

72

Iván Sánchez Milara Programmable Web Project. Spring 2024.

JSON and XML

•Formats used for representing data that are heavily used to share data among
heterogeneous peers

– Text format (not binary)

– Language independant

•Although the two of them can be used for M2M and H2M
– XML is more human readable oriented

– JSON is more machine readable oriented

• In the Programmable Web, they are mainly used for data exchange, although the
may be used also for data storage.

73

Iván Sánchez Milara Programmable Web Project. Spring 2024.

JSON

•JavaScript Object Notation

•Based on a subset of the JavaScript Language

•Built on two structures:
– A collection of name/value pairs

– An ordered list of values

•These structures can be mapped to structures in almost any programming
language

•Example

74

{"widget": {

"debug": "on",

"window": {

"title": "Sample Konfabulator Widget",

"name": "main_window",

"width": 500,

"height": 500 }

}}

http://www.json.org

Iván Sánchez Milara Programmable Web Project. Spring 2024.

XML

•Extensible Markup Language
– Markup language: system for annotating a document,

•First intended for data publishing

•Markup based in tags:
<tag>content</tag>

•More info
– Appendix 1: App1_XML_Basics

– http://www.w3.org/XML/

•Example

75

<widget>

<debug>on</debug>

<window title="Sample Konfabulator Widget">

<name>main_window</name>

<width>500</width>

<height>500</height>

</window>

</widget>
(http://www.json.org)

http://www.w3.org/XML/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…)
in a way that all content is connected and accessible to the user.

“Hypertext […] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

• Hypermedia

– Data

– Hypermedia controls. Indicates what actions could I do next, what are the target
resource to perform the action (link) and how can I perform those actions (http
method / response).

76

* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (HTML)

Get started

<img alt="Google" height="92" id="hplogo"

src="/images/branding/googlelogo/2x/googlelogo_color_272x92dp.png" rel="icon"/>

77

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

78

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (Collection+JSON)

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

79

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX 3: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (XML and JSON)

• XML or JSON as such are not hypermedia (no define hypermedia controls!!!!)

• XML contains some extensions to convert an XML document in hypermedia:
• xlink from http://www.w3.org/1999/xlink

– Define a set of attributes to establish relations

• atom:link from http://www.w3.org/2005/Atom

– XML element to establish relations

• JSON-LD (JSON for Linked Data) is a media type compatible with JSON that integrates hypermedia controls
– http://json-ld.org/

80

<book title="Harry Potter">

<description xlink:type="simple“ xlink:href="/images/HPotter.gif“ xlink:show="new">

As his fifth year at Hogwarts School of Witchcraft and Wizardry approaches, Harry is ...

</description>

</book>

{ "@context": "http://json-ld.org/contexts/person.jsonld",
"@id": "http://dbpedia.org/resource/John_Lennon",
"name": "John Lennon,
"spouse": "http://dbpedia.org/resource/Cynthia_Lennon" }

http://www.w3.org/1999/xlink
http://www.w3.org/2005/Atom
http://json-ld.org/
http://json-ld.org/contexts/person.jsonld
http://dbpedia.org/resource/John_Lennon
http://dbpedia.org/resource/Cynthia_Lennon

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Pure hypermedia formats

•HAL

•Siren

•Collection + JSON

•Hydra

MORE IN APPENDIX 3: Hypermedia formats

81

Iván Sánchez Milara Programmable Web Project. Spring 2024.

CLIENTS

82

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web browser. An Human Driven client.

•A web browser is the client for ALL websites and web applications.

•TECHNOLOGIES:
– HTML-> Markup language which defines the content to be rendered by the browser

– CSS-> Style sheet language used for describing the look and formatting of a document

– JAVASCRIPT-> Scripting language that listen for events triggered by the users, the network or the host
system and execute predefined actions.

– AJAX-> A set of techniques based on Javascript which enable asynchronous interaction between a web
browser and a server

– WebSocket-> Computer communication protocol over TCP that provides full-duplex communication. It
enables for instance, pub/sub.

83

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Types of clients

• Human driven clients
– Decisions made by humans. IMPORTANT: how to represent information

to humans

• Crawlers
– It starts following all links iteratively from certain web, executing an

algorithm for each link followed
– E.g. Google

• Monitors
– Checks the state of a resource periodically
– E.g. RSS aggregator

• Scripts
– Simulate an human repeating a determined set of actions (eg. Accessing

sequentially a list of links).

• Agents
– Try to emulate humans who are actively engaged with a problem. Looks

to representation and take autonomous decisions based on states.

84

Iván Sánchez Milara Programmable Web Project. Spring 2024.

How a web browser works?

85

Iván Sánchez Milara Programmable Web Project. Spring 2024.

How a browser works (I) ?

1. The user inserts a URL on the browser address bar
• The browser makes an HTTP GET request to such URL

2. The browser parses the HTTP response
• The body of the response contains an HTML document

• The HTML document might have embedded CSS stylesheets and javascript code

3. The browser transform the HTML document in a tree structure.
– The tree can be access and modified using DOM interface (http://www.w3.org/DOM/): we refer

to this tree as DOM tree.

4. The DOM tree is rendereded by the browser.
• Content is provided by the HTML code while the style is given by the CSS code.

• When the whole DOM is rendered we can say that the webpage has been loaded.

5. Simultaneously the browser retrieves all external files embedded in the HTML
document (images and audio files, external javascript and CSS files ...). Those files are
stored in a temporal local storage. The DOM has links to those files.

86

Iván Sánchez Milara Programmable Web Project. Spring 2024.

How a browser works (II) ?

6. The user interacts with the web page shown on the browser.
• Events are captured and processed by Javascript.

• Javascript can modify asynchronously the DOM tree, and hence change the content
rendered on the browser.

7. Javascript might use AJAX to make asynchronous HTTP requests.
• HTTP responses are processed and the DOM tree is modified accorddingly.

• The browser keeps the same DOM tree. Just change the corresponding nodes.

8. When the user press a link a new website is loaded in the browser (the process
is repeated again).
– The old DOM tree is deleted.

87

Iván Sánchez Milara Programmable Web Project. Spring 2024.

PROGRAMMABLE WEB

88

Iván Sánchez Milara Programmable Web Project. Spring 2024.

What about current Web APIs (RPC or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

• Integrating a new API inevitably requires writing custom
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

89

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)

– Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

– A client can be implemented using any programming language
• Data is encapsulated and transmitted using any serialization languages

such as JSON, XML, HTML, YAML

90

	Slide 1: Programmable Web Project Part 1: Introduction Spring 2024
	Slide 2: SERVICES AND APIs
	Slide 3: Web Services
	Slide 4: Web Services
	Slide 5: Web Services
	Slide 6: Microservices
	Slide 7: APIs and Web APIs
	Slide 8: Web API
	Slide 9: Website vs Web API
	Slide 10: Web APIs Examples.
	Slide 11: REST and hypermedia
	Slide 12: Architectural styles
	Slide 13: REST (Representational State Transfer)
	Slide 14: REST (Representational State Transfer)
	Slide 15: REST (Representational State Transfer)
	Slide 16: REST (Representational State Transfer)
	Slide 17: REST (Representational State Transfer)
	Slide 18: Instagram API
	Slide 19: REST APIs
	Slide 20: Hypermedia driven Web APIs
	Slide 21: RPC
	Slide 22: RPC-style Web APIs
	Slide 23: RPC-style Web APIs
	Slide 24: RPC
	Slide 25: GraphQL
	Slide 26: GraphQL
	Slide 27: RPC technologies examples grpc
	Slide 28: OLD SOAP WEB SERVICES
	Slide 29: WSDL
	Slide 30: GRPC intro
	Slide 31: GRPC. Proto
	Slide 32: GRPC. Server
	Slide 33: GRPC. Client
	Slide 34: Types of service methods
	Slide 35: PUB/SUB
	Slide 36: Pub / Sub
	Slide 37: Pub / Sub
	Slide 38: Pub / Sub
	Slide 39: Pub / Sub
	Slide 40: Pub / Sub
	Slide 41: The World Wide Web
	Slide 42: What is the World Wide Web?
	Slide 43: What is the World Wide Web?
	Slide 44: World Wide Web success. Scalability
	Slide 45: How the WWW works?
	Slide 46: TECHNOLOGIES FOR THE WWW
	Slide 47: Client server model
	Slide 48: backend
	Slide 49: Backend
	Slide 50: DATABASES
	Slide 51: Definition
	Slide 52: ACID properties
	Slide 53: Relational – Non-relational
	Slide 54: RDBMS Concepts
	Slide 55: SQL vs NoSQL vs NewSQL
	Slide 56: Examples - Relational
	Slide 57: Examples – Non-relational
	Slide 58: Examples – Non-relational (I)
	Slide 59: SQL (I)
	Slide 60: SQL (II)
	Slide 61: SQL (III)
	Slide 62: TRANSPORT PROTOCOL: HTTP
	Slide 63: HTTP
	Slide 64: HTTP Request parts
	Slide 65: HTTP Request parts
	Slide 66: HTTP Response parts (I)
	Slide 67: HTTP Response parts
	Slide 68: HTTP Methods
	Slide 69: HTTP methods (I)
	Slide 70: HTTP methods (II)
	Slide 71: HTTP and REST style
	Slide 72: Data serialization languages
	Slide 73: JSON and XML
	Slide 74: JSON
	Slide 75: XML
	Slide 76: Hypermedia
	Slide 77: Hypermedia (HTML)
	Slide 78: Hypermedia (HTML)
	Slide 79: Hypermedia (Collection+JSON)
	Slide 80: Hypermedia (XML and JSON)
	Slide 81: Pure hypermedia formats
	Slide 82: CLIENTS
	Slide 83: Web browser. An Human Driven client.
	Slide 84: Types of clients
	Slide 85: How a web browser works?
	Slide 86: How a browser works (I) ?
	Slide 87: How a browser works (II) ?
	Slide 88: Programmable web
	Slide 89: What about current Web APIs (RPC or CRUD)?
	Slide 90: Web vs Programmable Web

