
Iván Sánchez Milara Programmable Web Project. Spring 2024.

Programmable Web Project
Part 2: Programmable Web

Spring 2024

WWW technologies (II)

Programmable Web

RESTful Web APIs and HATEOAS

Iván Sánchez Milara Programmable Web Project. Spring 2024.

The World Wide Web and technologies

2

Iván Sánchez Milara Programmable Web Project. Spring 2024.

What is the World Wide Web?

•Human consumption (H2M)

•Hypertext

•Uniform API and technologies

•Single client (Web browser)

3

Goal: Distribute data

Iván Sánchez Milara Programmable Web Project. Spring 2024.

TECHNOLOGIES FOR THE WWW

•Backend: Business logic + data storage (databases)

•Transport protocol: HTTP

•Data serialization languages

4

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Client server model

5

© David Vignoni LGPL license
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg

Iván Sánchez Milara Programmable Web Project. Spring 2024.

DATABASES

6

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Examples - Relational

•Relational databases are still the most commonly used.

•Relational databases are mainly composed by tables.

•A table is formed by zero (empty) or more rows.

•A row consists of one or more fields
– Each has a certain datatype. (columns)

• Some examples are: PostgreSQL, MySQL, SQLite

FirstName Surname PersonalId

John Smith 3321

Jack Johnson 4352

Mary Smith 9807

7

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

8

{

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});

Iván Sánchez Milara Programmable Web Project. Spring 2024.

TRANSPORT PROTOCOL: HTTP

9

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Request parts

•HTTP request example to http://www.cse.oulu.fi

GET / HTTP/1.1

Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The HTTP method. Here, the client
(web browser) is trying to GET some
information from the server
(www.cse.oulu.fi).

The path In this example the

path points to the root of the

host (just /)

REQUEST

LINE

The request headers Since the request does not

have entity, it only contains general and request

specific headers.

The entity-body This particular request has no entity body, which means the envelope is

empty! This is typical for a GET request, where all the information needed to complete the

request is in the path and the headers.

10

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HTTP Response parts

•Response Example: http://www.cse.oulu.fi

HTTP/1.1 200 OK
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Date: Wed, 05 Oct 2011 17:26:03 GMT
Server: Apache/2.2.3 (CentOS)
Vary: Cookie,User-Agent,Accept-Language
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering</title>
…

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”).

The response headers: general,

response and entitity headers
STATUS

LINE

The entity-body. In this case, the entity

body is a HTML document representing

a web page.

11

Iván Sánchez Milara Programmable Web Project. Spring 2024.

DATA SERIALIZATION LANGUAGES

12

Iván Sánchez Milara Programmable Web Project. Spring 2024.

JSON

•JavaScript Object Notation

•Based on a subset of the JavaScript Language

•Built on two structures:
– A collection of name/value pairs

– An ordered list of values

•These structures can be mapped to structures in almost any
programming language

•Example

13

{"widget": {

"debug": "on",

"window": {

"title": "Sample Konfabulator Widget",

"name": "main_window",

"width": 500,

"height": 500 }

}}

http://www.json.org

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…)
in a way that all content is connected and accessible to the user.

“Hypertext […] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

• Hypermedia

– Data

– Hypermedia controls. Indicates what actions could I do next, what are the target
resource to perform the action (link) and how can I perform those actions (http
method / response).

14

* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (HTML)

Get started

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

15

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

16

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

17

Iván Sánchez Milara Programmable Web Project. Spring 2024.

CLIENTS

18

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Types of clients

• Human driven clients
– Decisions made by humans. IMPORTANT: how to represent information

to humans

• Crawlers
– It starts following all links iteratively from certain web, executing an

algorithm for each link followed
– E.g. Google

• Monitors
– Checks the state of a resource periodically
– E.g. RSS aggregator

• Scripts
– Simulate an human repeating a determined set of actions (eg. Accessing

sequentially a list of links).

• Agents
– Try to emulate humans who are actively engaged with a problem. Looks

to representation and take autonomous decisions based on states.

19

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web browser. An Human Driven
client.

•A web browser is the client for ALL websites and web
applications.

•TECHNOLOGIES:
– HTML-> Markup language which defines the content to be rendered by the

browser

– CSS-> Style sheet language used for describing the look and formatting of a
document

– JAVASCRIPT-> Scripting language that listen for events triggered by the
users, the network or the host system and execute predefined actions.

– AJAX-> A set of techniques based on Javascript which enable asynchronous
interaction between a web browser and a server

– WebSocket-> Computer communication protocol over TCP that provides
full-duplex communication. It enables for instance, pub/sub.

20

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RPC TECHNOLOGIES EXAMPLES
GRPC

21

Iván Sánchez Milara Programmable Web Project. Spring 2024.

OLD SOAP WEB SERVICES

22

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Body>

<m:getUserFirstName xmlns:m="http://service.forum.rsi.isg.oulu.fi">
<m:userId>user-3</m:userId>

</m:getUserFirstName>
</soap:Body>
</soap:Envelope>

REQUEST

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
 <getUserFirstNameResponse xmlns="http://service.forum.rsi.isg.oulu.fi">
 <getUserFirstNameReturn>Axel</getUserFirstNameReturn>
 </getUserFirstNameResponse>
</soap:Body>
</soap:Envelope>

RESPONSE

Iván Sánchez Milara Programmable Web Project. Spring 2024.

WSDL

23

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC intro

24

• Based on Protocol Buffers
– Google technology for serializing data structures

https://grpc.io/docs/what-is-grpc/introduction/

https://developers.google.com/protocol-buffers/docs/overview
https://grpc.io/docs/what-is-grpc/introduction/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC. Proto

25

syntax = "proto3";

enum BookCategory {
 MYSTERY = 0;
 SCIENCE_FICTION = 1;
 SELF_HELP = 2;
}

message RecommendationRequest {
 int32 user_id = 1;
 BookCategory category = 2;
 int32 max_results = 3;
}

message BookRecommendation {
 int32 id = 1;
 string title = 2;
}

message RecommendationResponse {
 repeated BookRecommendation recommendations = 1;
}

service Recommendations {
 rpc Recommend (RecommendationRequest) returns (RecommendationResponse);
}

Compiled to
programming

language
structure
(objects)

https://realpython.com/python-microservices-grpc/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC. Server

26

class RecommendationService(recommendations_pb2_grpc.RecommendationsServicer):
def Recommend(self, request, context):

if request.category not in books_by_category:
context.abort(grpc.StatusCode.NOT_FOUND, "Category not found")

books_for_category = books_by_category[request.category]
num_results = min(request.max_results, len(books_for_category))
books_to_recommend = random.sample(

books_for_category, num_results
)

return RecommendationResponse(recommendations=books_to_recommend)

https://realpython.com/python-microservices-grpc/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

GRPC. Client

27

https://realpython.com/python-microservices-grpc/

>>> channel = grpc.insecure_channel("localhost:50051")
>>> client = RecommendationsStub(channel)
>>> request = RecommendationRequest(
... user_id=1, category=BookCategory.SCIENCE_FICTION, max_results=3
...)
>>> client.Recommend(request)

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Types of service methods

• Unary: the client sends a single request to the server and gets a single

response back, just like a normal function call.

• Server streaming RPCs: client sends a request to the server and
gets a stream to read a sequence of messages back.

– The client reads from the returned stream until there are no more messages.

– gRPC guarantees message ordering within an individual RPC call.

• Client streaming RPCs: the client writes a sequence of messages
and sends them to the server, again using a provided stream

– Once the client has finished writing the messages, it waits for the server to read them
and return its response.

– gRPC guarantees message ordering within an individual RPC call.

• Bidirectional streamming RPCs: Mix of two previous.

28

Iván Sánchez Milara Programmable Web Project. Spring 2024.

PROGRAMMABLE WEB

29

Iván Sánchez Milara Programmable Web Project. Spring 2024.

What about current Web APIs (RPC
or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

• Integrating a new API inevitably requires writing custom
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

30

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Programmable Web

31

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One client

Programmable Web:
• Targeted to machines
• Heterogeneous clients
• Multi language

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)

– Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

– A client can be implemented using any programming language
• Data is encapsulated and transmitted using any serialization languages

such asJSON, XML, HTML, YAML

32

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2023

• ROA Principles

• RESTful Web APIs

• Designing RESTful Web APIs

• Resource Oriented design vs
hypermedia driven design

Iván Sánchez Milara Programmable Web Project. Spring 2024.

INTRODUCTION TO ROA

34

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

35

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST Constraints

•Client-server architecture

•Stateless

•Cacheability

•Layered system

•Code on demand

•Uniform interface

36

Iván Sánchez Milara Programmable Web Project. Spring 2024.

REST

37

https://www.youtube.com/watch?v=w5j2KwzzB-0

Iván Sánchez Milara Programmable Web Project. Spring 2024.

ROA Introduction

•Resource Oriented Architecture (ROA)

– Architecture for creating Web APIs

– It conforms the REST design principles

– Base technologies: URLs, HTTP and Hypermedia

•Resource :

– Anything important enough to be referenced as a thing itself
• For example: List of the libraries of the city of Oulu, the last software version of

Windows, the relation between two friends, the result of factorizing a number

• Each resource is identified by a unique identifier

•We operate with resources representations by means of

HTTP Requests

– Retrieve or manipulate the state of the resource

38

Iván Sánchez Milara Programmable Web Project. Spring 2024.

ROA pillars

39

Four properties:

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Forum Resource hierarchy

40

forum

CategoryUser

Name

Description

Thread
Name

FirstName LastName Message

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Addressability

•Exposes the interesting aspects of its data set as resources

– Each resource is exposed using its URI

– The URI can be copied, pasted and distributed

– Example:
•http://forum.com/users/user1 refers to the information of

the user of the Forum

• I can send this URI by email, and the receiver can access this
information by copying this URI into his/her browser

41

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Addressability in WWW

•The WWW is addressable

42

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Uniform interface (I)

•Every API uses the same methods with the same meanings
– Without a uniform interface, clients have to learn how each API is expected

to get and send information

•ROA uses uniform interface provided by HTTP to act over the
resource provided in the URI

43

Method Description

GET Returns the resource representation

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Uniform interface (II)

• POST

– Creates a subordinate resource, that is, a resource existing as a children of
another resource

• Difference with PUT:

– POST creates new resources when the client does not know their URI

• Example: A client wants to create a new message in the forum

– The forum backend generates itself APIs for new messages. Client does not know in
advanced.

– POST HTTP request to /forum/categories/categoryName

– The server creates the message and assigns the URI, e.g.,
/forum/messages/message5

• The server sends the URI of the new resource back to the client in the HTTP
Response headers

– Appends information to the current resource state

• Example: Adding lines to a log entry

• Difference with PUT:

– POST modifies just part of the resource state

44

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Uniform interface (II)

•PATCH http://tools.ietf.org/html/rfc5789

– Partial edition/modification of a resource

• Client and server must agree on a new media type for patch
documents

– RFC 6902: proposed standard patch format for JSON.

• Send a diff of the resource representation. Changes to be done to the
resource.

• Content-Type: application/json-patch+json

• [{ "op": "remove", "path": "/a/b/c" }, { "op": "add", "path": "/a/b/c",

"value": ["foo", "bar"] }, { "op": "replace", "path": "/a/b/c",

"value": 42 }]

45

http://tools.ietf.org/html/rfc5789

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Uniform interface (III)

• URI: http://forum.com/messages/msg-3

– GET: Retrieves this representation

– DELETE: Removes the message with id «msg-3» from the server

– PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderIP, and Registered
could be modified and MUST be included in the request body (The complete
representation is sent and it replaces the old one)

– POST: Add a response to the message with id «msg-3» (subordinate resource). The
body of the request should include the new message

46

<msg:Message messageID="msg-3">

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi Markkanen used to play before

he came to Edmonton Oilers? He was excellent in the Stanley Cup finals

last season! Too bad they lost...</msg:Body>

<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>

<msg:SenderIP>217.119.25.162</msg:SenderIP>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Uniform interface in WWW

•Only GET and POST supported in HTML

•Rest of HTTP methods supported through Javascript

47

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Statelessness (I). State concept.

•Resource state:
– A resource representation that is exchanged between server and

client

– Same for all the clients making simultaneous requests

–Lives in the server

•Application state:
– Snapshot of the entire system at a particular instant, including past

actions and possible future state transitions

– Future possible application states are informed in the resource
representation sent by the server.

– Lives in the client

STATLESSNESS => REFERS TO APPLICATION STATE

48

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Statelessness (II)

•Every HTTP request happens in complete isolation
(STATELESS) -> (application state)

– Server never operates based on information from previous
requests, SERVER DOES NOT STORE APPLICATION STATE

• Eg: In a photo album application if I am in “picture 3” I cannot
request the “next picture” but “picture 4”

– Server considers each client request in isolation and in terms
of the current resource state. However, it provides information
on which are the future states.

– Client handles the application workflow

49

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Statelessness in WWW

•Originally the WWW is statless
– GET an URL always should return same website

•Multiple applications needs state information (login, last
accessed, visited pages)

– Cookies

– Session id in URL

50

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Connectedness (I)

•Resource representation MUST contain links to other
resources

•Links must include
– The relation among resources

– Optionally, information on how to access linked resources

51

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Connectedness (II)

52

<msg:Thread>

<msg:Message messageID="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-3"></atom:link>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

<msg:Message messageID="msg-7" replyTo="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-7"/>

<msg:Title>History</msg:Title>

<atom:link rel="http://forum/rels/parent-message"

href="http://forum/messages/msg-3"/>

<msg:Registered userID="user-1">

<user:Nickname>Mystery</user:Nickname>

<user:Avatar file="avatar_1.png"/>

<atom:link rel="self" href="http://forum/users/Mistery"/>

</msg:Registered>

</msg:Message>

</msg:Thread>

A representation of the message with
id «msg-3»

A representation of user with
nickname «HockeyFan»

A representation of the parent
message of «msg-7»

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Connectedness in WWW

•WWW is connected
– Access and modification of any resource state: following links or filling forms

53

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"

method="post">

<input type="text" name="message" value=""

required="true" />

<input type="submit" value="Post" />

</form>

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RESTFUL WEB APIS.
HYPERMEDIA.

54

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Richardson Maturity Model

55

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Richardson Maturity Model

56

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Richardson Maturity Model

57

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Richardson Maturity Model

58

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Richardson Maturity Model

59

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Richardson Maturity Model

60

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RESTful and Hypermedia

•PROGRAMMABLE WEB goal:
– Achieve a machine to machine understanding similar the client-

server understanding in the web.

• E.g. Modifying the object model in the server does not affect the server

•RESTful designers forgot one of the principles of REST:
– What needs to be done to make the REST architectural style clear on the

notion that hypertext is a constraint? In other words, if the engine of
application state (and hence the API) is not being driven by hypertext, then it
cannot be RESTful and cannot be a REST API.

Roy Fielding. REST APIs must be hypertext-driven

•Client does not need to know beforehand workflows or
request formats. All that information comes on the server
responses.

61

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS (I)

• Hypermedia As The Engine Of Application State
– Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…) in a
way that all content is connected and accessible to the user

– Engine of Application State
• Hypermedia: Core and driving force of the transformation of the application state

• The server manipulates the client’s state by sending a hypermedia “menu” containing
options from which the client is free to choose.

• Hypermedia contains:

– Data

– Hypermedia controls:

» Enables the state transitions, guiding clients future requests.

» Provides protocol semantics: which URL, method, request body is required
to perform an application state transition.

» Server warrantees workflow control. The hypermedia control:
» Describe relationship among resources

» Explain who the client should integrate the response into the workflow

» In HTML <a>, , <script> and Link header are hypermedia control

• Hypermedia drives the application state

62

R

R

R R

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS

63

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS

64

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS

65

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS

Hypermedia format contain:

•Data (state of a representation)

•Hypermedia controls

– The URI of the associated resource (link)

– The relation between both resources

– Usually, protocol information

66

entities" : [

{ "class" : ["switch"],

"href" : "/switches/4",

"rel" : ["item"],

"properties" : { "position" : ["up"] },

"actions" : [

{ "name" : "flip",

"href" : "/switches/4",

"title" : "Flip the mysterious switch.",

"method": "POST"

}

]

}

]

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS

Hypermedia As The Engine Of Application State

• Ideally, client just need the entry point to a service
– The rest of the URIs (resources) are discovered through the hypermedia

controls

– RESOURCES AS STATE IN A MACHINE DIAGRAM

•Well-designed RESTful APIs permit modifying the server
architecture (e.g. URL structure) and data model without
breaking the clients

67

R

R

R R

R

R

R R

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HATEOAS

68

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage
with them without dictating any goals

Which are the hypermedia controls?

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Semantic challenge (I)

• In WWW browser does not understand problems domain.
– Humans process information coming from the server and decide on

future actions

• In M2M this is not possible:
– Machines NEED to understand the problem domain

– How can we program a computer to make the decisions about
which links to follow?

•This is the biggest challenge in web API design using
hypermedia: bridging the semantic gap between
understanding a document’s structure and understanding
its semantics.

69

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Semantic Challenge (II)
Semantic gap

•The gap between the structure of a document and its real-
world meaning

Protocol semantics
– What kind of actions a client can perform?

– Usually solved using hypermedia control

Application semantics
– How the representation is explained in terms of real-world concepts.

– Same word might have different meanings in different contexts.
• E.g. time:

– Preparation time if we are using a recipe book

– Workout duration if we are building a gym agenda

– Time of the day if we are using a calendar

70

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Semantic challenge (III)

Two ways of communicating semantics to the client

71

Media Types Profiles

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Media types

•Defines the format of the message

‒Sometimes include protocol and application semantics

•There are some general-purpose media types with
hypermedia support:

– Allows defining the protocol semantics and application
semantics in the API

– HAL, HTML, SIREN, MASON

72

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Media types

73

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

<users>

 <user>

 <nickname>Axel</nickname>

 </user>

 <user>

 <nickname>Bob</nickname>

 </user>

</users>

{users:[

 user:{nickname:”Axel},

 user:{nickname:”Bob”}

]}

 ”Axel”

 ”Bob”

http://myapp/users/axel
http://myapp/users/bob

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Media Types: Collection+JSON

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

74

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Mason

• Mime-type: application/vnd.mason+json
• Link: https://github.com/JornWildt/Mason

{”name”: ”eeyore”,

”color”: ”grey”

"@controls": {

"self": {

"href": "http://api.example.org/donkey/eeyore"

},

"dk:mood": {

"title": "Change mood",

"href": "http://api.example.org/donkey/eeyore/mood",

"method": "PUT",

"encoding": "json",

"schema": {

"type": "object",

"properties": {

"Mood": {"type": "string"},

"Reason": {"type": "string"}

}

}

}

}

75

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

https://github.com/JornWildt/Mason

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Profile

•Explains the document semantics that are not covered by its
media type.

• A profile describes the exact meaning of each semantic
descriptor

Jenny Gallegos

– “A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics[…] associated with the resource
representation, in addition to those defined by the media type”
[RFC 6906]

76

• It is provided to the client either defined in a text document
or using a specific description language: ALPS, JSON-LD,
RDF-Schema, XMDP

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Instagram API

77

https://developers.facebook.com/docs/instagram-api/

e.g. Comment Moderation: https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

https://developers.facebook.com/docs/instagram-api/
https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

Iván Sánchez Milara Programmable Web Project. Spring 2024.

CLIENTS

78

Iván Sánchez Milara Programmable Web Project. Spring 2024.

79

Spreadsheets are general purposes clients, ’canvas’ for
creating all sort of solutions

Our goal is to build clients, in which the workflow is not fully
hardcode but build upon the information send by the server

• Clients that do not memorize solution ahead of time
• Are able to adapt to new possible actions as the service

presents them
• Are able to adapt to changes in the URLs

Iván Sánchez Milara Programmable Web Project. Spring 2024.

SUMMARY

80

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Programmable Web

81

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One client

Programmable Web:
• Targeted to machines
• Heterogeneous clients
• Multi language

Iván Sánchez Milara Programmable Web Project. Spring 2024.

82

https://apisyouwonthate.com/blog/rest-
and-hypermedia-in-2019

Addressability

Uniform interface

Connectedness

Statelessness

https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019
https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Summary

• REST APIs must be hypertext driven according to Fielding:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

• HATEOAS
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

• Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

• Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

83

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Iván Sánchez Milara Programmable Web Project. Spring 2024.

DESIGN OF RESTFUL WEB APIS
USING ROA

84

Iván Sánchez Milara Programmable Web Project. Spring 2024.

RESTful Web services design steps
85

1. Figure out the data set

2. Split the data set into resources

➢ Create Hierachy

3. Name the resources with URIs

4. Establish the relations and possible actions among resources

5. Expose a subset of the uniform interface

6. Design the resource representations using hypermedia formats
1. Define the media types

2. Define the profiles

7. Define protocol specific attributes
➢ E.g. Headers, response code

8. Consider error conditions: What might go wrong?

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Forum Resource hierarchy

86

forum

CategoryUser

Name

Description

Thread
Name

FirstName LastName Message

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 1 - Figure out the data set
•Define the concepts that you are going to expose

in the Web API

•Describe the relations between them

87

Forum example
❑ Forum API permits users to publish new messages
❑ Users can post messages to different categories
❑ Users can reply to other users’ messages
❑ Every user has a public profile and a private profile

➢ Every user can check other users’ public profiles
➢ A private profile is shown only to that user’s friends

❑ Users can check the last messages anyone has
posted and commented

❑ Users can search messages in the forum using
several criteria: keywords, user, popularity, date published, date
commented, ...

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 2 - Split the data into resources (I)
• RESTful Web services expose 3 kinds of resources:

– Predefined one-off resources for important aspects of the application
• They are usually repository for other resources.

– Also known as Collections.
• They cannot be deleted and their state cannot be modified directly

– State only changes by modifying children resources

– A resource for every object exposed through the service
• A service may expose many kinds of objects, each with its own resource set
• Most services expose a large number of these resources

– Resources representing the results of algorithms applied to the data set
• Collections of resources, which are usually the results of queries

88

Forum example:
List of messages sent by a certain user; messages of a certain category

Forum example:
message categories (eg, Science category); particular users; particular messages

Forum example:
List of all users; list of all messages

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 2 - Split the data into resources (II)

•Resources are ordered in a hierarchical way
– Hierarchy can be represent using a graph diagram

– Consider carefully the hierarchy when resources which represent results
of algorithms are involved; what is the result of the action?

• STEPS:
– Define all possible types of resources the Web service is intended to

expose
– Give a name to each resource type

– Define the hierarchy
– Define how those types of resources fit in the hierarchy
– Take into account the platform you are going to use

• Some platforms make it easier to create resources in certain way

89

Forum example:
Some of the resource types are: message, user, category

Iván Sánchez Milara Programmable Web Project. Spring 2024.

•Associate each resource type with a URI pattern
– In a resource-oriented service the URI contains

all the scoping info

• Design principles:
1. URIs should be descriptive

• The resource and its URI should be naturally and intuitively linked

2. Every URI designates exactly one resource
• Two resources can NOT share the same URI
• Two different resources may point to the same data (but they are

different resources!!!)
• Forum Example:

– At some moment the resources
/forum/users/user_id/last_message and
/forum/message/message_1

could point to the same data (a forum message),
but the resources are different!

3. The same resource can have one or many URIs

90

Step 3 - Name the resources with URIs (I)

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 3 - Name the resources with URIs (II)
4. URIs should have a clear structure

• Variation should be predictable – a client knowing the structure of the service’s URI
should be able of building URIs

• Example:
– http://forum.com/users/user_1/public_profile

• Then, to get the public profile of user_2 the URI should be
– Correct: /users/user_2/public_profile
– Incorrect: /get_public_profile/user_2

• Use the following convention:
1) Use path variables to encode hierarchy: /parent/child

2) Use punctuation characters in path variables if there is no hiearchical relation:
/parent/child1;child2

» Use commas when the order of the scoping is important
» Use semicolon in other cases

3) Use query variables to imply inputs for an algorithm

91

Forum example:
❑ http://forum.example.com/Users/user1

❑ http:://forum.example.com/messages/message1;message2

❑ http://forum.example.com/Categories/Science

❑ http://forum.example.com/Users/user1/history?last=5

➢ Returns a list of the last 5 messages posted by user1

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 4 – Establish the relation

among resources

•State diagram of the application

•Will help later to design the hypermedia

92

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 5 - Expose a

subset of the uniform interface (I)

•Explain what happens to each resource when it is exposed to
any of the methods of the uniform interface

– Remember: A resource DOES NOT have to expose all the methods

– If your resource is read-only, then expose two methods: GET and/or
HEAD

– If your resource can be created or modified you need to implement PUT,
POST and/or DELETE

•Avoid creating your own methods (by overloading POST)
– If you think you need an extra method,

change the verb into a noun and create a resource

– Example: If you think you need a method named publish just create a
resource named publication. Use the uniform interface operations to
modify it (e.g. POST a publication)

93

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 5 - Expose a

subset of the uniform interface (II)
•Forum examples:
– Get all messages from the Sports category

– Create a new User

• User information in the HTTP request body

– Post a message into Science category

• Message content and details of the user are in the message body

– Delete the message msg-4

94

GET http://forum.example.com/Category/Sports

DELETE http://forum.example.com/Category/Computers/Messages/msg-4

POST http://forum.example.com/Category/Science/Messages

PUT http://forum.example.com/Users/nicky

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Steps 6. Design the resource representation using
hypermedia formats

•Assign to each resource representation a format to transfer the
resource state between client and server

–The same resource can have different representation
formats, but:

• The server must understand all representations sent by the clients
• The server must use a representation format the clients can understand

– A client can ask for a specific format in the URI:
» Eg: http://forum.example.com/users/user_1.xml

– A client can send HTTP headers indicating the formats it accepts:
» RFC2616 defines the following headers: Accept, Accept-

Encoding…

•NOTE: The resources representations sent from the client does
not need to use hypermedia: JSON OR XML IS ENOUGH

95

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Media types (I)

• Domain specific standards
– Defines application level and protocol level semantics
– OpenSearch, SVG, VoiceXML

• Standard for specific patterns (e.g. collection pattern)
– Defines protocol level but not application level standards

• Collection+JSON, Atom, Odata

• Microformat and microdata
– Defines protocol level but not application level
– Microformat:

• Extension of HTML4. Allows using the class attribute to define semantics

– Microdata:
• Extension of HTML5. Use itemprop, itemscope and itemtype attributes to define the

semantics

– Lots in schema.org

• General purpose media-types.
– Allows personalizing the the protocol semantics and application level semantics
– HAL, HTML, SIREN

• Be careful with fake hypermedia: XML and JSON

96

http://schema.org/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Media types (II)

• If you use your own media type be sure that hypermedia
controls:

– The URI of the remote resource

– The relation of the current resource with the remote one

– Try to include protocol information

• E.g. which method I need to execute / what is the format of the
request body

• If you are using XHTML:
– Use <a> to have a link to another resource

– Use <form> when you:

• Include in the URI a query string

• Represent URIs that follow a certain pattern

97

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Domain specific media types. Creating
links (I)

• Using xlink (http://www.w3.org/1999/xlink) attributes to create links:

– Establish a relation between a local XML element and
remote resources

• xlink:type=”simple” : Simple relation between
current XML element and remote resource

• xlink:href=”uri” : Provides the path to the linked resource

• Other voluntary attributes are:

– xlink:role is a URI which indicates the relation between two resources

– xlink:title is a human readable label which describes the link

– More complicated relations can be established using
other association types: extended, locator, arc, resource

<users xmlns:xlink=”http://www.w3.org/1999/xlink>

 <user xlink:type=”simple” xlink:href=”http://forum/users/axel”>

 <nickname>Axel</nickname>

 </user>

 <user xlink:type=”simple” xlink:href=”http://forum/users/bob”>

 <nickname>Bob</nickname>

 </user>

</users>

98

http://www.w3.org/1999/xlink

Iván Sánchez Milara Programmable Web Project. Spring 2024.

• Using atom:link (http://www.w3.org/2005/Atom)

– Element <atom:link> contains attributes to establish a relation between
resources:

•href: indicates the URI of the linked resource
•rel: establish the semantic association between the resources. Different values:

– self: the link points to the resource itself
– More values on next slide

•type: indicates the mime type of the representation

<users xmlns:atom=”http://www.w3.org/2005/Atom”>

 <user>

 <atom:link rel=”self” href=”http://forum/users/axel”>

 <nickname>Axel</nickname>

 </user>

 <user>

 <atom:link rel=”self” href=”http://forum/users/bob”>

 <nickname>Bob</nickname>

 </user>

</users>

99

{users:[

 user:{nickname:”Axel”,link:{rel:”self”,href=” http://forum/users/axel”}},

 user:{nickname:”Bob”,link:{rel:”self”,href=” http://forum/users/bob”}}

]}

XML

JSON

Domain specific media types. Creating
links (II)

http://www.w3.org/2005/Atom

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Domain specific media types. Creating links
(III)

•Using atom:link (cont)
– More values for rel attribute:

•alternate: alternate representation of the same resource

•edit: clients can edit the resource using this link

•related: the linked resource has certain relation with the current
reource

•via: identifies the source for the information of current resource

•enclosure: the link is a resource which contains current resource

•previous, next: previous and next element in a list

•first, last: first and last element of a list

• Application developer can create application specific relations, expressed
as URI

– Very useful to manage application flow
Drawback: it is application dependant

100

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Domain specific media types. Creating links (IV)

• URI templates permit exposing an unlimited number of resources of the same type using
just one URI

– Parametrize URIs with variables that can be substituted at runtime
• Variable names are shown between {}

– Useful for the client to deliver parameters for an algorithm:
• http://forum/messages?older_than={timestamp}&maxReturned={max_returned}

– And to access a resource from a large set:
• http://forum/users/{user_id}

• In this case the client should have some knowledge on possible values

• URI templates are generated in the servers
– They are parts of the links to other resources included in a resource representation; clients can fill the

templates

• However, there are no conventions for representing URI templates
• Do not abuse URI templates

– If you doubt then do not use URI templates
– Use links when the set of results is known

• Use URI templates for:
– Documentation
– To identify resources in servers that accept URI template syntax

101

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Profiles

•A profile must define:
– Link relations:

• Describing the state transition that will happen if the client triggers a
hypermedia control (protocol semantics)

• Usually implemented as ’rel’ attribute
– http://www.iana.org/assignments/link-relations/link-relations.xhtml

– Must be documented unless rel attribute is defined by IANA

• Do not forget to include the method that is utilized

– Semantic descriptors:

• Describing the meaning of properties in the representation (application
semantics)

102

http://www.iana.org/assignments/link-relations/link-relations.xhtml

Iván Sánchez Milara Programmable Web Project. Spring 2024.

IANA link relations

• Global register containing about 60 relations.
– http://www.iana.org/assignments/link-relations/link-relations.xhtml

– Some useful relations:
• collection and item to create collections.

• first, last, next and previous for pagination

• replies to described message thread

• latest-version, successor-version, working-copy for history of a resource state

• edit and edit-media to cover update/delete a resource

• Some document media types defines its own possible relations

• Some profiles include also relations

• If you wanna use your own link relation
– Use extension relations: http://mydoma.in/myrelation

• Microformats Wiki also contains a big set of relations:
– http://microformats.org/wiki/existing-rel-values

– DO NOT USE THEM AS SUCH IF YOU HAVE NOT DEFINED THEM IN YOUR
PROFILE

103

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://mydoma.in/myrelation
http://microformats.org/wiki/existing-rel-values

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Linking to a profile

• Using the profile Link relation:

– RFC 6906 defines a rel called profile

– Can be used in any rel attribute: links (Siren or Collection+Json); link
defined in HTML, HAL or in the Link HTTP header.

<html>

<head>

<link href="http://microformats.org/wiki/hcard" rel="profile">

• Using the profile Media Type parameter:

– Added as parameter in the Content-Type header

Content-Type = application/collection+json;profile=http://myprofile

• Using special purpose hypermedia controls defined in some media types.

104

http://myprofile/

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Steps 6. Design the resource representation using
hypermedia formats

105

Forum example. Message resource.
Media type: HAL

{

"_links":{

"self":{"href":"/forum/api/messages/msg-

2/" "profile":"http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message"},

"collection":{"href":"/forum/api/messages/", "type":"application/vnd.collection+json", "profile":"http://atlassi

an.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message"},

"author":{"href":"/forum/api/users/AxelW/", "type":"application/hal+json", "profile":"http://atlassian.virtues.f

i:8090/display/PWP/Exercise+3#Exercise3-Forum_User"},

"in-reply-to":{"href":null "profile":"http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-

Forum_Message"}

}

"template" : {

"data" : [

{"prompt" : "", "name" : "headline", "value" : "", "required":true},

{"prompt" : "", "name" : "articleBody", "value" : "", "required":true},

{"prompt" : "", "name" : "editor", "value" : "", required:false},

{"prompt" : "", "name" : "author", "value" : "", required:false},

]

}

"articleBody":"I am using a float layout on my website but I've run into some problems with Internet Explorer. I

have set the left margin of a float to 100 pixels, but IE uses a margin of 200px instead. Why is that? Is this one

of the many bugs in IE?",

"headline":"CSS: Margin problems with IE",

"editor":null,

"author":"AxelW"

}

http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_User
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_User
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 7. Define protocol specific attributes

•The resource representation is encapsulated in the HTTP

request/response message
– The HTTP body contains the representation

– The HTTP entity headers contain metadata about the representation e.g.

Its media type. Some important headers are:

• Content-Type: mime-type of the representation format
– A list of mime types can be found in RFC2045 and RFC2046

• Content-Length: size of the body

• Accept: formats a client understands (only in HTTP request)

• Accept-Encoding: encoding accepted for the body

• Other headers can be used for other purposes:
– caching, authorization...

106

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 7 - Define protocol specific attributes
• An HTTP response includes a status code indicating how the request was

processed in the server

– Headers provide additional information

• Response code + headers indicating success:

– GET

– DELETE

– POST and PUT

200 OK No headers Successful request

304 Not Modified No headers The client must get the resource from the cache

200 OK No headers
Successful request. The HTTP body might contain a status
message

201 Created Location
Successful creation. Location header indicates the URI of the
resouce

200 OK No headers
The resource existed and has been modified. The Body could
contain the new resource

301 Moved permanently Location The data sent caused the resource URI to be changed

107

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Step 8 - Define possible errors
• Define when and how a request could fail

– Define the error message in the response body. It should be another resource

• Define also the response status codes and the headers of the response:

– GET and DELETE

– PUT and POST

404 Not Found No headers
Resource was not found. HTTP body message might have
contained an error message.

303 See Other Location
The resource was not found. Location header provides a
related resource.

400 Bad Request No header The URI contained some erroneous fields or parameters

415 Unsopported Media Type No headers
The representation format is not supported
by the server

409 Conflict No header
The representation tried to change the resource
to a state that is not allowed

400 Bad Request No header The resource representation contained an invalid value

108

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Basic workflow between
client and web service

CLIENT SERVER

Send HTTP request

❑Check the HTTP method
❑Check the headers
❑Parse the message body
❑Perform the requested action
❑Build the response message
▪ HTTP response code
▪ headers
▪message body

Send HTTP response

❑Check HTTP response code.
❑Proceed according to the

response code:
▪ process the message body
▪ perform needed actions
▪ handle exceptions

Build the HTTP envelope.
Include method information.
Headers and message
body if needed.

109

Iván Sánchez Milara Programmable Web Project. Spring 2024.

• Get all messages from the Sports category

– HTTP Method: GET

– URI: http://forum.example.com/Category/Sports

– Returns:

• On success: 200 OK + XML message body

• On error: 401 Unauthorized or 404 Not found

Forum example - GET

Request HTTP envelope

GET Category/Sports/ HTTP/1.1

Host: forum.example.com

Accept: text/xml

Accept-Encoding: gzip,deflate

Accept-Charset: windows-

1251,utf-8;q=0.7,*;q=0.7

Successful HTTP response envelope

HTTP/1.1 200 OK

Date: Sun, 12 Sep 2010 11:30:12 GMT

Transfer-Encoding: chunked

Content-Type: text/xml;

Content-Length: length;

<?xml version="1.0" encoding="UTF-8"?>

<msg:Thread>

 <msg:Message messageID="msg-3">

 <msg:Registered userID="user-7">

 <user:Nickname>HockeyFan</user:Nickname>

 <user:Avatar file="avatar_7.jpg"/>

 </msg:Registered>

 <msg:Title>Edmonton's goalie</msg:Title>

 <msg:Body>Does anyone know where Jussi...

 (...)

 </msg:Message>

(…)

<msg:Thread>

110

Iván Sánchez Milara Programmable Web Project. Spring 2024.

• Post the message into Science category
– HTTP Method: POST

– URI: http://forum.example.com/Category/Science/Messages

– Request: XML message body

– Returns:

• On success: 201 Created (Location header tells the URI of created message)

• On error: 400 Bad Request or 409 Conflict

Forum example - POST

Request HTTP envelope

POST Category/Science/Messages HTTP/1.1

Host: forum.example.com

Accept: text/xml

Accept-Encoding: gzip,deflate

Accept-Charset: windows-1251,utf-

8;q=0.7,*;q=0.7

Content-Type: text/xml;charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="UTF-8"?>

<msg:Message messageID=“" replyTo="msg-1">

<msg:Anonymous>Science guru</msg:Anonymous>

 (...)

</msg:Message>

Successful HTTP response envelope

HTTP/1.1 201 Created

Date: Tue, 19 Sep 2010 06:11:22 GMT

Content-Type: text/xml; charset=iso-8859-1

Content-Length: length

Location:
http://forum.example.com/Category/Science/Messages/msg-4

<?xml version="1.0" encoding="UTF-8"?>

<msg:Message messageID=“msg-4" replyTo="msg-1">

<msg:Anonymous>Science guru</msg:Anonymous>

<msg:Title>In case</msg:Title>

<msg:Body>Just in case you can't ...

(...)

</msg:Message>

111

Iván Sánchez Milara Programmable Web Project. Spring 2024.

• Delete certain message

– HTTP Method: DELETE

– URL: http://forum.example.com/Category/Science/Messages/msg-4

– Returns:

• On success: 204 No Content

• On error: 401 Unauthorized or 404 Not Found

Forum example - DELETE

Error HTTP response

HTTP/1.1 404 Not Found

Date: Tue, 19 Sep 2010 06:11:22 GMT

Content-Type: text/html; charset=iso-8859-1

Content-Length: length

Keep-Alive: timeout=15, max=96

Connection: Keep-Alive

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

 <head>

 <title>404 Not Found</title>

 </head>

 <body>

 <h1>Not Found</h1>

<p>The requested message msg-4 was not found on

this server.</p>

 </body>

</html>

Request HTTP envelope

DELETE

Category/Science/Messages/msg-4

HTTP/1.1

Host: forum.example.com

Accept: text/xml, text/html

Accept-Encoding: gzip,deflate

Accept-Charset: windows-1251,utf-

8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

112

Iván Sánchez Milara Programmable Web Project. Spring 2024.

HYPERMEDIA DRIVEN DESIGN

113

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Resource driven vs Hypermedia
driven

•Resource driven design
– MOST utilized approach nowadays when people talk about REST

– Nouns is the most important

•Hypermedia driven design
– ACTION is the most important

– Acknowledges that the state transitions are even more important
than the state itself.

• I want to do a thing.

• Which verbs should I use to do that?

– Previous state transitions will provide ‘affordances’ that indicates
what actions I can perform next and a way of figuring out more
information about those affordances if we do not know it already.

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Advantages and disadvantages

PROS
• promote scalability
• allow resilience towards

future changes
– Clients and serves

evolve separately

• promote decoupling
and encapsulation

– All request are self-
contained

– Facilitates evolvability

• Code on demand
promotes extensibility

CONS

• NOT latency-tolerant
design

• caches can get stale

• Not as efficient on an
individual request level
as other designs

• More verbose request /
responses

• Usually, more complex
clients

115

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Design process (I)

1.Evaluate processes

2.Create state machine

3.Evaluate media types

4.Create or choose media types

5.Implementation!

6.Refinements

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Design process (II)

•Documenting a REST API => defining the media types.

“A REST API should spend almost all of its descriptive effort in defining the
media type(s) used for representing resources and driving application
state, or in defining extended relation names and/or hypertext-enabled
mark-up for existing standard media types. Any effort spent describing
what methods to use on what URIs of interest should be entirely defined
within the scope of the processing rules for a media type (and, in most
cases, already defined by existing media types)”

Roy Fielding. REST APIs must be hypertext-driven

•The media type is the only sort of contract between the
client and the server

117

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia driven APIs. Examples.

118

Mike Amundsen. REST, Hypermedia, and the Semantic Gap: Why "RMM Level-3 REST" is not
enough.

Simpler clients. No memorize workflow, objects or URL. Just implement how
to process hypermedia controls.

https://www.youtube.com/watch?v=UkAt9XSOfaE
https://www.youtube.com/watch?v=UkAt9XSOfaE

Iván Sánchez Milara Programmable Web Project. Spring 2024.

Hypermedia driven APIs examples

•Skype for business:
– https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

•Paypal is promoting the use of Hypermedia in their REST API:
– https://developer.paypal.com/docs/api/overview/

– https://developer.paypal.com/docs/integration/direct/paypal-rest-
payment-hateoas-links/

•Amazon AppStream:
– http://docs.aws.amazon.com/appstream/latest/developerguide/api

-reference.html

•Foxycart:
– https://api.foxycart.com/docs#

•Zalando:
– http://zalando.github.io/restful-api-guidelines/index.html

119

https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

Iván Sánchez Milara Programmable Web Project. Spring 2024.

References

1.“RESTful Web Services” by Leonard Richardson and Sam Ruby

2.“RESTful Web APIs” by Leonard Richardson, Mike Amundsen and Sam Ruby

3.“RESTful Web Services Cookbook” by Subbu Allamaraju

4.“REST in practice. Hypermedia and Systems Architecture” by Jim Webber, Savas
Parastidis and Ian Robinson.

5.Representational State Transfer (REST), Roy Thomas Fielding. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

6.“Peer-to-Peer Systems and Applications” Ralf Steinmetz KlausWehrle (Eds.)

Available at http://www.springerlink.com/content/g6h805426g7t/#section=586017&page=1

7. ATOM http://www.ietf.org/rfc/rfc4287.txt

8.HTTP 1.1 http://tools.ietf.org/html/rfc2616

9.JSON http://www.json.org/

120

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.springerlink.com/content/g6h805426g7t/
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/html/rfc2616
http://www.json.org/

	Slide 1: Programmable Web Project Part 2: Programmable Web Spring 2024
	Slide 2: The World Wide Web and technologies
	Slide 3: What is the World Wide Web?
	Slide 4: TECHNOLOGIES FOR THE WWW
	Slide 5: Client server model
	Slide 6: DATABASES
	Slide 7: Examples - Relational
	Slide 8: Examples – Non-relational
	Slide 9: TRANSPORT PROTOCOL: HTTP
	Slide 10: HTTP Request parts
	Slide 11: HTTP Response parts
	Slide 12: Data serialization languages
	Slide 13: JSON
	Slide 14: Hypermedia
	Slide 15: Hypermedia (HTML)
	Slide 16: Hypermedia (HTML)
	Slide 17: Hypermedia (HTML)
	Slide 18: CLIENTS
	Slide 19: Types of clients
	Slide 20: Web browser. An Human Driven client.
	Slide 21: RPC technologies examples grpc
	Slide 22: OLD SOAP WEB SERVICES
	Slide 23: WSDL
	Slide 24: GRPC intro
	Slide 25: GRPC. Proto
	Slide 26: GRPC. Server
	Slide 27: GRPC. Client
	Slide 28: Types of service methods
	Slide 29: Programmable web
	Slide 30: What about current Web APIs (RPC or CRUD)?
	Slide 31: Programmable Web
	Slide 32: Web vs Programmable Web
	Slide 33: Programmable Web Project Part 3: RESTful Web APIS Spring 2023
	Slide 34: Introduction to ROA
	Slide 35: REST (Representational State Transfer)
	Slide 36: REST Constraints
	Slide 37: REST
	Slide 38: ROA Introduction
	Slide 39: ROA pillars
	Slide 40: Forum Resource hierarchy
	Slide 41: Addressability
	Slide 42: Addressability in WWW
	Slide 43: Uniform interface (I)
	Slide 44: Uniform interface (II)
	Slide 45: Uniform interface (II)
	Slide 46: Uniform interface (III)
	Slide 47: Uniform interface in WWW
	Slide 48: Statelessness (I). State concept.
	Slide 49: Statelessness (II)
	Slide 50: Statelessness in WWW
	Slide 51: Connectedness (I)
	Slide 52: Connectedness (II)
	Slide 53: Connectedness in WWW
	Slide 54: RESTful WEB APIS. Hypermedia.
	Slide 55: Richardson Maturity Model
	Slide 56: Richardson Maturity Model
	Slide 57: Richardson Maturity Model
	Slide 58: Richardson Maturity Model
	Slide 59: Richardson Maturity Model
	Slide 60: Richardson Maturity Model
	Slide 61: RESTful and Hypermedia
	Slide 62: HATEOAS (I)
	Slide 63: HATEOAS
	Slide 64: HATEOAS
	Slide 65: HATEOAS
	Slide 66: HATEOAS
	Slide 67: HATEOAS
	Slide 68: HATEOAS
	Slide 69: Semantic challenge (I)
	Slide 70: Semantic Challenge (II) Semantic gap
	Slide 71: Semantic challenge (III)
	Slide 72: Media types
	Slide 73: Media types
	Slide 74: Media Types: Collection+JSON
	Slide 75: Mason
	Slide 76: Profile
	Slide 77: Instagram API
	Slide 78: Clients
	Slide 79
	Slide 80: Summary
	Slide 81: Programmable Web
	Slide 82
	Slide 83: Summary
	Slide 84: DESIGN oF RESTFul web APIs uSING ROA
	Slide 85: RESTful Web services design steps
	Slide 86: Forum Resource hierarchy
	Slide 87: Step 1 - Figure out the data set
	Slide 88: Step 2 - Split the data into resources (I)
	Slide 89: Step 2 - Split the data into resources (II)
	Slide 90: Step 3 - Name the resources with URIs (I)
	Slide 91: Step 3 - Name the resources with URIs (II)
	Slide 92: Step 4 – Establish the relation among resources
	Slide 93: Step 5 - Expose a subset of the uniform interface (I)
	Slide 94: Step 5 - Expose a subset of the uniform interface (II)
	Slide 95: Steps 6. Design the resource representation using hypermedia formats
	Slide 96: Media types (I)
	Slide 97: Media types (II)
	Slide 98: Domain specific media types. Creating links (I)
	Slide 99: Domain specific media types. Creating links (II)
	Slide 100: Domain specific media types. Creating links (III)
	Slide 101: Domain specific media types. Creating links (IV)
	Slide 102: Profiles
	Slide 103: IANA link relations
	Slide 104: Linking to a profile
	Slide 105: Steps 6. Design the resource representation using hypermedia formats
	Slide 106: Step 7. Define protocol specific attributes
	Slide 107: Step 7 - Define protocol specific attributes
	Slide 108: Step 8 - Define possible errors
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Hypermedia driven design
	Slide 114: Resource driven vs Hypermedia driven
	Slide 115: Advantages and disadvantages
	Slide 116: Design process (I)
	Slide 117: Design process (II)
	Slide 118: Hypermedia driven APIs. Examples.
	Slide 119: Hypermedia driven APIs examples
	Slide 120: References

