
1

Iván Sánchez

Programmable Web Project

RESTful Web APIs with Django

NOTE: Updated in February 2013

Django

• Django is a web framework written in Python.

• They claim that Django is designed to make
common Web-development tasks fast and
easy

• Links:

– Project Web page: http://www.djangoproject.com/

– Lot of documentation:
https://docs.djangoproject.com/en/1.4/

– Tutorial:
https://docs.djangoproject.com/en/1.4/intro/tutorial01/

• The VM machine has version 1.4

Iván Sánchez

http://www.djangoproject.com/
https://docs.djangoproject.com/en/1.4/
https://docs.djangoproject.com/en/1.4/intro/tutorial01/

2

Django
• Main characteristics:

– Design according to MVC principles.

• Model – View –Controller

– Dynamic admin interface.

– Support for URI templates.

– Caching and syndication framework.

– Dynamic and customizable middleware that

allows preprocessing and postprocessing HTTP

requests and responses:

• Similar to Filters in Java Servlet

• Several layers: SessionMiddleware, Authentication

Middleware

Iván Sánchez

Django MVC

• Model: contains the essential fields and
behaviors of the data you’re storing.
– Resource state talking in RESTful terms

– Django has an ORM (Object Relational
Mapper) that allows storing Models in
Database.

– Each model is a Python class that is derived
from django.db.models.Model.

• We are using our own models in this
exercsies; not use django.Model as
BaseClass!!!

Iván Sánchez

http://docs.djangoproject.com/en/dev/ref/models/instances/

3

Django MVC

• View: a Python function that takes a
HTTP request and returns a HTTP
response.
– Is the resource representation talking in

REStful terms

• Django has its own template language
to generate dynamic Web pages
– template is a text document marked-up

using the Django template language.
• A template can contain block tags or variables.

• Similar to JSP in Java or PHP

– NOT used in this exercise

Iván Sánchez

Django project structure

• Django is divided in projects

– Each project runs an instance of the

server (must listen requests in a different

port)

– Each project defines its own settings and

middleware layers

– Each project is formed by different

applications

Iván Sánchez

4

Django project structure

Iván Sánchez

Project
Configuration

Project applications

You can create a project using the executable from the django/bin or

Python/Scripts folder:

django-admin.py startproject ”mysite”

Executables

Django project structure
• Files at the root of the project

– manage.py -> Server exectuble.
• Default port: 8000

• Common configuration files in the project folder
– settings.py -> Configure your project

• Define yoDefine database settings

• ur middleware classes

• Define the location of ROOT_URLCONF

• Define the installed applications: INSTALLED_APPS

– urls.py -> The URL declarations for this Django
project

• Tells which is the View which must process a request to a
specific URI

Iván Sánchez

python manage.py runserver port

5

Django project structure

• Files at the application level:

– models.py -> Defines the model classes

– views.py -> Defines the views classes

– urls.py -> Urls declaration of this Django

application

• Defines which View must process each URI

• THIS IS NOT MANDATORY, this information

could be in the project urls.py

Iván Sánchez

Django URL dispatcher

• urls.py at the application level has the following structure:

Iván Sánchez

urlpatterns = patterns('',

url(r’forum/messages/(?P<message_id>msg-\d+)$',

'app2.messageView', name="message"),

url(r’forum/messages$',

'app2.messagesView',name="messages"),)

• urlpatterns contains a list of patterns:

• Each pattern is a url, that is a triple formed by:

• regular expression of the URL path (URI template)

• view class that process the request and generate the response

• name keyword which contains a unique identifier for this pattern

(useful for reverse)

• Each URI template might contains URI template variables

• The are passed to the view as a keyword argument

6

Django URL dispatcher
• URI templates variables

– /(?P<message_id>

• defines a URI template variable named message_id

– msg-\d+

• defines the regular expression for this variable, that is, a
regular expression that restricts the possible values.

– Example: forum/messages/msg-1
• is a URI that meets this URI template

• ”message_id” variable is set to ”msg-1”

• You can define regular expression at any point of
the URI template
– Regular expressions in Python:

http://docs.python.org/library/re.html

Iván Sánchez

r’forum/messages/(?P<message_id>msg-\d+)$’

Django URL dispatcher
• django.core.urlresolvers.reverse () function allows

to create URI templates dynamically, setting the values

for the URI template variables

– Syntax:

– Example, you want to create a link that:
• points to the URI which identifies ’app2.messageView’

• with the message id= msg-1,

• that is: /forum/messages/msg-1

Iván Sánchez

reverse(”message”,(”msg-1”,))

reverse(’URL_name',(variable1_value,variable2_value,...))

Name of the url as defined
in the urls.py

values for each one of the URI templates
variables defined for that URI template

7

Django REST framework
• Library that applies the REST principles to Django

frameworks
– Substitute the View class by APIView class

– You can still use Django Models

– Expand Django model data in formats such as XML,
JSON and YAML

– More info:
http://django-rest-framework.org/

• urls.py changes to:

where Message and Messages are derived class
from APIView class.

Iván Sánchez

urlpatterns = patterns('',

url(r'messages/(?P<message_id>msg-\d+)$',

Message.as_view(), name="message"),

url(r'messages$', Messages.as-view(),name="messages"),)

class Message (APIView):

#DELETE

def delete(self,request,*uritemplatevariables):

pass

#GET

def get(self,request,*uritemplatevariables):

pass

#PUT

def put (self,request,*uritemplatevariables):

pass

#POST

def post(self,request,*uritemplatevariables):

pass

Django REST framework

• Skeleton

Iván Sánchez

Methods:

• Each one maps to one HTTP
method

http://django-rest-framework.org/

8

Django REST framework

• The method receive extra arguments if the

associated uri template contains template

variables

• Given the following url definition:

• You have to define the methods for

Message() as follows:

Iván Sánchez

def get(self,request,message_id):

pass

url(r’^messages/(?P<message_id>msg-\d+)$',

Message.as_view(), name="message"),

Django REST framework.

Request object
• Extends Django HttpRequest, adding support for

REST framework request parsing and
authentication.

• Data attributes:
– .DATA=> Parsed content of the request

body. Data is stored as a set of native python
datatypes (See later)

– .QUERY_PARAMS=> A dictionary

– .META: returns a dictionary containing all
available HTTP headers. The header name is
modified:

– converting all characters to uppercase

– replacing any hyphens with underscores

– adding an HTTP_ prefix to the name

Iván Sánchez

9

Django REST framework.

Response object
• You can generate a HTTP response using the following

syntax:

• It is very important that the body is serialized into a set
of native python datatypes (generaly a dictionary)

• Django REST framework transform the serialized body
content into a format that the client accepts.
– Checks the Accept HTTP request Header

– Django REST framework choosed adequate renderer. More in
exercise 3.

Iván Sánchez

response=Response(”serialized_body_content”,

status=”response_status-code”,

headers=”{headername: value,}”)

Django REST framework

cycle (I)
1. When Django receives a HTTP request for a

Django-rest-framework application, it is processed
as follows:

2. Generates a rest-framework.Request object.

3. Store the headers in the request.META attribute.

4. Stores the query parameters of the URL in the
request.QUERY_PARAMS attribute.

5. Parses the information in the HTTP request entity
body and translates it into a native python
structure (a dictionary). Stores this dictionary in
the request.DATA attribute.

6. Consults the urls.py file to check the resource
(class which extends the rest-framework.APIView)
in charge of processing the request.

Iván Sánchez

10

Django REST framework

cycle (II)
7. Checks the HTTP method and calls the equivalent method

of the class. The method receives as parameters the
request object and a keyword with the values of the regular
expressions variables.

8. The method deserializes the native python structure into a
database module.

9. The method accesses the database and extracts necessary
information.

10. The database models are serialized into a python native
structure (a dictionary).

11. The method generates the response including the serialized
database models, the status code and the headers.

12. Django-rest-framework renders this model to a
representation that the client understands (in this
application is always JSON).

Iván Sánchez

Parsing/Deserialize/Serialize/

Render

Iván Sánchez

HTTP Request

Data format defined by

Content-Type header:

e.g. JSON, XML, YAML,

file

Parsing

Django REST

framework Request

Data is transformed into a set

of native python datatypes

Resource Model

Data is transformed in complex

data structured that can be

stored in database

Deserialize

Data can be received in multiple
serialization formats : JSON XML
..., But from this point it always
processed with the same code.

11

Parsing/Deserialize/Serialize/

Render

Iván Sánchez

HTTP Request

Data format defined by

Content-Type header:

e.g. JSON, XML, YAML,

file

Render

Django REST

framework Request

Data is transformed into a set

of native python datatypes

Resource Model

Data is transformed in complex

data structured that can be

stored in database

Serialize

Data can be sent into a format
that the client understand. Uses
the Accept header.

JSON

• JSON (JavaScript Object Notation) is a

lightweight data-interchange format.

Iván Sánchez

A string is a sequence of zero or more Unicode characters,

wrapped in double quotes, using backslash escapes.

CHECK: http://json.org/

12

Some links

• Python API: http://docs.python.org/library/index.html

• Django documentation:
https://docs.djangoproject.com/en/1.4/
– HTTPRequest/response:

https://docs.djangoproject.com/en/1.4/ref/request-
response/

– URLConf:
https://docs.djangoproject.com/en/1.3/topics/http/urls/

• Django-rest-framework: http://django-rest-
framework.org/

• List of HTTP status codes:
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Iván Sánchez

http://docs.python.org/library/index.html
https://docs.djangoproject.com/en/1.4/ref/request-response/
https://docs.djangoproject.com/en/1.3/topics/http/urls/

