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Programmable Web Project

RESTful Web APIs with Django

NOTE: Updated in February 2013

Django

• Django is a web framework written in Python.

• They claim that Django is designed to make 
common Web-development tasks fast and 
easy

• Links: 

– Project Web page: http://www.djangoproject.com/

– Lot of documentation: 
https://docs.djangoproject.com/en/1.4/

– Tutorial: 
https://docs.djangoproject.com/en/1.4/intro/tutorial01/

• The VM machine has version 1.4
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http://www.djangoproject.com/
https://docs.djangoproject.com/en/1.4/
https://docs.djangoproject.com/en/1.4/intro/tutorial01/
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Django
• Main characteristics:

– Design according to MVC principles.

• Model – View –Controller

– Dynamic admin interface.

– Support for URI templates.

– Caching and syndication framework.

– Dynamic and customizable middleware that 

allows preprocessing and postprocessing HTTP 

requests and responses:

• Similar to Filters in Java Servlet

• Several layers: SessionMiddleware, Authentication 

Middleware
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Django MVC

• Model: contains the essential fields and 
behaviors of the data you’re storing.
– Resource state talking in RESTful terms

– Django has an ORM (Object Relational 
Mapper) that allows storing Models in 
Database.

– Each model is a Python class that is derived 
from django.db.models.Model.

• We are using our own models in this 
exercsies; not use django.Model as 
BaseClass!!!
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http://docs.djangoproject.com/en/dev/ref/models/instances/
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Django MVC

• View: a Python function that takes a 
HTTP request and returns a HTTP 
response.
– Is the resource representation talking in 

REStful terms

• Django has its own template language 
to generate dynamic Web pages
– template is a text document marked-up 

using the Django template language. 
• A template can contain block tags or variables.

• Similar to JSP in Java or PHP

– NOT used in this exercise
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Django project structure

• Django is divided in projects

– Each project runs an instance of the 

server (must listen requests in a different 

port)

– Each project defines its own settings and 

middleware layers

– Each project is formed by different 

applications
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Django project structure
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Project 
Configuration

Project applications

You can create a project using the executable from the django/bin or 

Python/Scripts folder:

django-admin.py startproject ”mysite”

Executables

Django project structure
• Files at the root of the project

– manage.py -> Server exectuble.
• Default port: 8000

• Common configuration files in the project folder
– settings.py -> Configure your project

• Define yoDefine database settings

• ur middleware classes

• Define the location of ROOT_URLCONF

• Define the installed applications: INSTALLED_APPS

– urls.py -> The URL declarations for this Django
project

• Tells which is the View which must process a request to a 
specific URI
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python manage.py runserver port
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Django project structure

• Files at the application level:

– models.py -> Defines the model classes

– views.py -> Defines the views classes

– urls.py -> Urls declaration of this Django 

application

• Defines which View must process each URI

• THIS IS NOT MANDATORY, this information 

could be in the project urls.py
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Django URL dispatcher

• urls.py at the application level has the following structure:
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urlpatterns = patterns('',

url(r’forum/messages/(?P<message_id>msg-\d+)$', 

'app2.messageView', name="message"),

url(r’forum/messages$', 

'app2.messagesView',name="messages"),)

• urlpatterns contains a list of patterns:

• Each pattern is a url, that is a triple formed by:

• regular expression of the URL path (URI template)

• view class that process the request and generate the response

• name keyword which contains a unique identifier for this pattern 

(useful for reverse)

• Each URI template might contains URI template variables

• The are passed to the view as a keyword argument
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Django URL dispatcher
• URI templates variables

– /(?P<message_id> 

• defines a URI template variable named message_id

– msg-\d+ 

• defines the regular expression for this variable, that is, a 
regular expression that restricts the possible values.

– Example: forum/messages/msg-1
• is a URI that meets this URI  template

• ”message_id” variable is set to ”msg-1”

• You can define regular expression at any point of 
the URI template
– Regular expressions in Python: 

http://docs.python.org/library/re.html
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r’forum/messages/(?P<message_id>msg-\d+)$’

Django URL dispatcher
• django.core.urlresolvers.reverse () function allows 

to create URI templates dynamically, setting the values 

for the  URI template variables

– Syntax: 

– Example, you want to create a link that:
• points to the URI which identifies ’app2.messageView’ 

• with the message id= msg-1,

• that is: /forum/messages/msg-1
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reverse(”message”,(”msg-1”,))

reverse(’URL_name',(variable1_value,variable2_value,...))

Name of the url as defined 
in the urls.py

values for each one of the URI templates 
variables defined for that URI template
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Django REST framework
• Library that applies the REST principles to Django 

frameworks
– Substitute the View class by APIView class

– You can still use Django Models

– Expand Django model data in formats such as XML, 
JSON and YAML

– More info: 
http://django-rest-framework.org/

• urls.py changes to:

where Message and Messages are derived class 
from APIView class.

Iván Sánchez

urlpatterns = patterns('',

url(r'messages/(?P<message_id>msg-\d+)$', 

Message.as_view(), name="message"),

url(r'messages$', Messages.as-view(),name="messages"),)

class Message (APIView):

#DELETE

def delete(self,request,*uritemplatevariables):

pass

#GET 

def get(self,request,*uritemplatevariables):

pass

#PUT

def put (self,request,*uritemplatevariables):

pass

#POST

def post(self,request,*uritemplatevariables):

pass

Django REST framework

• Skeleton
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Methods: 

• Each one maps to one HTTP 
method

http://django-rest-framework.org/
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Django REST framework

• The method receive extra arguments if the 

associated uri template contains template 

variables

• Given the following url definition:

• You have to define the methods for 

Message() as follows:
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def get(self,request,message_id):

pass

url(r’^messages/(?P<message_id>msg-\d+)$', 

Message.as_view(), name="message"),

Django REST framework.

Request object
• Extends Django HttpRequest, adding support for 

REST framework request parsing and 
authentication.

• Data attributes:
– .DATA=> Parsed content of the request 

body. Data is stored as a set of native python 
datatypes (See later)

– .QUERY_PARAMS=> A dictionary

– .META: returns a dictionary containing all 
available HTTP headers. The header name is 
modified:

– converting all characters to uppercase

– replacing any hyphens with underscores 

– adding an HTTP_ prefix to the name
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Django REST framework.

Response  object
• You can generate a HTTP response using the following 

syntax:

• It is very important that the body is serialized into a set 
of native python datatypes (generaly a dictionary)

• Django REST framework transform the serialized body 
content into a format that the client accepts. 
– Checks the Accept HTTP request Header

– Django REST framework choosed adequate renderer. More in 
exercise 3. 
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response=Response(”serialized_body_content”, 

status=”response_status-code”, 

headers=”{headername: value,}”)

Django REST framework 

cycle (I)
1. When Django receives a HTTP request for a 

Django-rest-framework application, it is processed 
as follows: 

2. Generates a rest-framework.Request object.

3. Store the headers in the request.META attribute. 

4. Stores the query parameters of the URL in the 
request.QUERY_PARAMS attribute.

5. Parses the information in the HTTP request entity 
body and translates it into a native python 
structure (a dictionary). Stores this dictionary in 
the request.DATA attribute.

6. Consults the urls.py file to check the resource 
(class which extends the rest-framework.APIView) 
in charge of processing the request.
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Django REST framework 

cycle (II)
7. Checks the HTTP method and calls the equivalent method 

of the class. The method receives as parameters the 
request object and a keyword with the values of the regular 
expressions variables.

8. The method deserializes the native python structure into a 
database module. 

9. The method accesses the database and extracts necessary 
information.

10. The database models are serialized into a python native 
structure (a dictionary). 

11. The method generates the response including the serialized 
database models, the status code and the headers.

12. Django-rest-framework renders this model to a 
representation that the client understands (in this 
application is always JSON). 
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Parsing/Deserialize/Serialize/

Render
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HTTP Request

Data format defined by

Content-Type header:

e.g. JSON, XML, YAML,

file

Parsing

Django REST 

framework Request

Data is transformed into a set 

of native python datatypes

Resource Model

Data is transformed in complex 

data structured that can be 

stored in database  

Deserialize

Data can be received in multiple
serialization formats : JSON XML
..., But from this point it always
processed with the same code.
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Parsing/Deserialize/Serialize/

Render
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HTTP Request

Data format defined by

Content-Type header:

e.g. JSON, XML, YAML,

file

Render

Django REST 

framework Request

Data is transformed into a set 

of native python datatypes

Resource Model

Data is transformed in complex 

data structured that can be 

stored in database  

Serialize

Data can be sent into a format
that the client understand. Uses
the Accept header.

JSON

• JSON (JavaScript Object Notation) is a 

lightweight data-interchange format.

Iván Sánchez

A string is a sequence of zero or more Unicode characters, 

wrapped in double quotes, using backslash escapes.

CHECK: http://json.org/
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Some links

• Python API: http://docs.python.org/library/index.html

• Django documentation: 
https://docs.djangoproject.com/en/1.4/
– HTTPRequest/response: 

https://docs.djangoproject.com/en/1.4/ref/request-
response/

– URLConf: 
https://docs.djangoproject.com/en/1.3/topics/http/urls/

• Django-rest-framework: http://django-rest-
framework.org/

• List of HTTP status codes: 
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
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http://docs.python.org/library/index.html
https://docs.djangoproject.com/en/1.4/ref/request-response/
https://docs.djangoproject.com/en/1.3/topics/http/urls/

