
1/9/2019

1

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Programmable Web Project
Part 1: Introduction

Spring 2019

The World Wide Web

Technologies for the World Wide Web
• Backend: Business logic + data storage

(databases)

• Transport protocol: HTTP

• Data serialization languages

• Clients

• Services and APIs

• Programmable Web

Iván Sánchez Milara Programmable Web Project. Spring 2019.

The World Wide Web

2

1

2

1/9/2019

2

Iván Sánchez Milara Programmable Web Project. Spring 2019.

What is the World Wide Web?

https ://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay
=1

3

Iván Sánchez Milara Programmable Web Project. Spring 2019.

What is the World Wide Web?

•Human consumption (H2M)

•Hypertext

•Uniform API and technologies

•Single client (Web browser)

4

Goal: Distribute data

3

4

https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1
https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1

1/9/2019

3

Iván Sánchez Milara Programmable Web Project. Spring 2019.

World Wide Web success. Scalability

Web is distributed Web is massively
decoupled

Web is dynamic

5

Source: https://www.go-globe.com/blog/things-that-happen-every-60-seconds/

Iván Sánchez Milara Programmable Web Project. Spring 2019.

How the WWW works?

http://www.youtypeitwepostit.com/

6

5

6

1/9/2019

4

Iván Sánchez Milara Programmable Web Project. Spring 2019.

TECHNOLOGIES FOR THE WWW

•Backend: Business logic + data storage
(databases)

•Transport protocol: HTTP

•Data serialization languages

•Clients

7

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Client server model

8

© David Vignoni LGPL license
https://en.wikipedia.org/wiki/Client%E2%80%93server_mod el #/m edia/ Fil e:C lient -ser ver-model.s vg

7

8

1/9/2019

5

Iván Sánchez Milara Programmable Web Project. Spring 2019.

BACKEND

9

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Backend

•Stores application data persistently

–DATABASE

•Defines how to process request from the client and
process the data according to the requests coming
from the client

–BUSINESS LOGIC

•Expose the data using a defined API

10

9

10

1/9/2019

6

Iván Sánchez Milara Programmable Web Project. Spring 2019.

DATABASES

11

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Definition

•Databases emerged to solve challenges of storing and managing
huge amounts of data

•A database:
– is a data structure

– stores organized information

– can be easily accessed, managed and updated

•DBMS (Database Managing System) is the software that allows
creating, managing and storing database structures.

– Responsible for data integrity, recovery and access

– Provides a way for extract or modify the data

•There are different ways to model the data in the database
– Lately divided into relational models and non-relational models

12

11

12

1/9/2019

7

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Relational – Non-relational

•Relational:

– Database model developed by E.F. Codd in 1970

• Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared
Data Banks"

– Data is represented in terms of tuples (rows), grouped into relations
(tables) that can be linked with each other.

– Developed almost in parallel with SQL language

•Non-Relational:
– Sometimes miscalled Non SQL databases

– Umbrella that gathers different databases that are not relational.

– Data is not organized in related tables.

• Some store objects, some store key-value pairs,
some store documents

– More flexible and scalable

14

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RDBMS Concepts

•ORM
– To access a relational database from an object oriented context

(PHP, python, Java…)

• interface translating relational logic to objects logic i s needed.

• Such interface is called Object-relational mapping (ORM, O/RM, and
O/R mapping).

•CRUD
– Databases are persistent data

– There are four basic functions to manage persistent data:

• Create

• Read

• Update

• Delete

15

14

15

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

1/9/2019

8

Iván Sánchez Milara Programmable Web Project. Spring 2019.

SQL vs NoSQL vs NewSQL

16

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Examples - Relational

•Relational databases are still the most commonly used.

•Relational databases are mainly composed by tables.

•A table is formed by zero (empty) or more rows.

•A row consists of one or more fields

– Each has a certain datatype. (columns)

• Some examples are: PostgreSQL, MySQL, SQLite

FirstName Surname PersonalId

John Smith 3321

Jack Johnson 4352

Mary Smith 9807

17

16

17

1/9/2019

9

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data s tore: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

18

{

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});

Iván Sánchez Milara Programmable Web Project. Spring 2019.

TRANSPORT PROTOCOL: HTTP

23

18

23

1/9/2019

10

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HTTP (I)

• The Hypertext Transfer Protocol (HTTP):

–HTTP communication usually takes place over TCP/IP

connections.

– Most used application protocol in the World Wide Web.

– Also used as a transport protocol for other application protocols,
such as SOAP, XML-RPC …

•HTTP allows bidirectional transfer of resources
representations between client and server.

– Resource: network data object identified by a URI

”an application-level protocol for distributed, collaborative,

hypermedia information systems”
RFC 2616 (http://www.faqs.org/rfcs/rfc2616.html)

24

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HTTP Request parts

•HTTP request example to http://www.cse.oulu.fi

GET / HTTP/1.1

Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The HTTP method. Here, the client
(web browser) is trying to GET some
information from the server
(www.cse.oulu.fi).

The path In this example the

path points to the root of the

host (just /)

REQUEST

LINE

The request headers Since the request does not

have entity, it only contains general and request

specific headers.

The entity-body This particular request has no entity body, which means the envelope is

empty! This is typical for a GET request, where all the information needed to complete the

request is in the path and the headers.

26

24

26

1/9/2019

11

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HTTP Response parts

•Response Example: http://www.cse.oulu.fi

HTTP/1.1 200 OK
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Date: Wed, 05 Oct 2011 17:26:03 GMT
Server: Apache/2.2.3 (CentOS)
Vary: Cookie,User-Agent,Accept-Language
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering </title>
…

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”). The response headers: general,

response and entitity headers
STATUS

LINE

The entity-body. In this case, the entity

body is a HTML document representing

a w eb page.

28

Iván Sánchez Milara Programmable Web Project. Spring 2019.

HTTP Methods

Defined in RFC2616

29

Method Description

GET Returns the resource representation

HEAD Identical to GET except that the server returns only headers

information in the response

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

28

29

1/9/2019

12

Iván Sánchez Milara Programmable Web Project. Spring 2019.

DATA SERIALIZATION LANGUAGES

33

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…)
in a way that all content is connected and accessible to the user.

“Hypertext […] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

• Hypermedia

– Data

– Hypermedia controls. Indicates what actions could I do next, what are the target
resource to perform the action (link) and how can I perform those actions (http
method / response).

34

* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

33

34

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

1/9/2019

13

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia (HTML)

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

35

Iván Sánchez Milara Programmable Web Project. Spring 2019.

JSON and XML

•Formats used for representing data that are heavily used to
share data among heterogeneous peers

– Text format (not binary)

– Language independand

•Although the two of them can be used for M2M and H2M
– XML is more human readable oriented

– JSON is more machine readable oriented

•In the Programmable Web, they are mainly used for data
exchange, although the may be used also for data storage.

36

35

36

1/9/2019

14

Iván Sánchez Milara Programmable Web Project. Spring 2019.

JSON

•JavaScript Object Notation

•Based on a subset of the JavaScript Language

•Built on two structures:
– A collection of name/value pairs

– An ordered list of values

•These structures can be mapped to structures in almost any
programming language

•Example

37

{"widget": {

"debug": "on",

"window": {

"title": "Sample Konfabulator Widget",

"name": "main_window",

"width": 500,

"height": 500 }

}}

http://www.json.org

Iván Sánchez Milara Programmable Web Project. Spring 2019.

XML

•Extensible Markup Language
– Markup language: system for annotating a document,

•First intended for data publishing

•Markup based in tags:
<tag>content</tag>

•More info

– Appendix 1: App1_XML_Basics

– http://www.w3.org/XML/

•Example

38

<widget>

<debug>on</debug>

<window title="Sample Konfabulator Widget">

<name>main_window</name>

<width>500</width>

<height>500</height>

</window>

</widget>
(http://www.json.org)

37

38

http://www.w3.org/XML/

1/9/2019

15

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia: Collection+JSON

{ "collection":

{

"version" : "1.0",

"href" : "http://www.youtypeitwepostit.com/api/",

"items" : [

{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

"data" : [

{ "name" : "text", "value" : "Test." },

{ "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

"links" : []

},

{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

"data" : [

{ "name" : "text", "value" : "Hello." },

{ "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

"links" : []

},

"template" : {

"data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

}

}

}

39

Mime type: application/vnd.collection+json

Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATSIN APPENDIX 3: Hypermedia formats

Iván Sánchez Milara Programmable Web Project. Spring 2019.

CLIENTS

43

39

43

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

1/9/2019

16

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Types of clients

•Human driven clients
– Decisions made by humans. Importance on how to represent

information to humns

•Crawlers
– It starts following all l inks iteratively from certain web, executing an

algorithm for each link followed
– E.g. Google

•Monitors
– Checks the state of a resource periodically
– E.g. RSS aggregator

•Scripts
– Simulate an human repeating a determined set of actions (eg. Accessing

sequentially a l ist of l inks).

•Agents
– Try to emulate humans who are actively engaged with a problem. Looks

to representation and take autonomous decisions based on states.

44

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web browser. An Human Driven
client.

•A web browser is the client for ALL websites and web
applications.

•TECHNOLOGIES:

– HTML-> Markup language which defines the content to be rendered
by the browser

– CSS-> Style sheet language used for describing the look and
formatting of a document

– JAVASCRIPT-> Scripting language that l isten for events triggered by
the users, the network or the host system and execute predefined
actions.

– AJAX-> A set of techniques based on Javascript which enable
asynchronous interaction between a web browser and a server

45

44

45

1/9/2019

17

Iván Sánchez Milara Programmable Web Project. Spring 2019.

SERVICES AND APIS

49

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web services (I)

• Web services are logical units with clearly defined
interfaces (API):

– what functionality they perform and

– which data formats they accept and produce

• They are application independent

– services can be used by other services and applications.

• Web service can incorporate the functionality of other
services (composite service)

Service Service Service

Appl ication Appl ication

Service

50

49

50

1/9/2019

18

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web services (II)

•Web services are not prepared to human consumption (in
contrast to websites).

– Web services require an architectural style to provide clear and
unambiguous interaction (clearly defined interfaces), because
there’s no smart human being on the client end to keep track.

51

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web API
52

Bus iness Logic

Web API

PYTHON
CLIENT

HTTP Request

JAVA
CLIENT

SQL/
NoSQL

Database

BROWSER
CLIENT

HTML & CSS

Javascript A
JA

X

HTTP Request

HTTP Request

WEB API

HTTP Request

51

52

1/9/2019

19

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web APIs

•Application Programming Interfaces

•Defines how the service functionality is exposed by means of
one or more endpoints:

– Protocol semantics

– Application semantics

•Nowadays, web service word is in disuse => We use Web
API instead

53

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Website vs Web API

•Gist:
– Github tool that allows sharing code and applications

– Website at: https://gist.github.com/

– API at https://developer.github.com/v3/gists/

– Gist clients: https://gist.github.com/defunkt/370230

• For instance, Sublime Text cl ient: https://github.com/condemil/Gist

54

53

54

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist

1/9/2019

20

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Architectural styles

•RPC

•REST
– CRUD

– Hypermedia (HATEOAS)

56

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RPC-style Web APIs

•RPC: Remote procedure call
– A method or subroutine is executed in another address space,

without the programmer explicitly encoding the details of the
remote interaction.

•An RPC-style Web API accepts an envelope full of data from
its client, and sends a similar envelope back.

– The method and the scoping information are kept inside the
envelope, or on stickers applied to the envelope.

•Every RPC-style Web API defines a brand new vocabulary:
method name, method parameters

•Some examples:
– XML-RPC

– SOAP.

57

56

57

1/9/2019

21

Iván Sánchez Milara Programmable Web Project. Spring 2019.

RPC

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

58

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST (Representational State
Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation
.pdf

– Does not define an architecture but requirements for the
architecture

•Representation
– Resource-oriented: operates with resources.

• Resource: Any piece of information that
can be named. Identified generally by URL

•State:
– value of all properties of a resourceat the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

– UNIFORM interface

59

58

59

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

1/9/2019

22

Iván Sánchez Milara Programmable Web Project. Spring 2019.

REST APIs

•CRUD

– Most extended approach. Majority of Web APIs nowadays

– Not follow strictly REST principles

• More on this next lecture

•Hypermedia
– Follows strictly REST principles

60

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Twitter API

61

https://developer.twitter.com/en /docs.html

60

61

1/9/2019

23

Iván Sánchez Milara Programmable Web Project. Spring 2019.

What about current Web
applications (RPC or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

•Integrating a new API inevitably requires writing custom
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

62

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)

– Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

–A client can be implemented using any programming language
• Data is encapsulated and transmitted using any serialization languages

such asJSON, XML, HTML, YAML

63

62

63

1/9/2019

24

Iván Sánchez Milara Programmable Web Project. Spring 2019.

Hypermedia driven Web APIs

•Follows strictly Fielding dissertation principles.
– REST APIs must be hypertext driven:

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

•Uses Hypermedia as the Engine of the Application State
– Hypermedia describes the actions that you can perform with the

resources.
• Client does not memorize operations nor workflow. Everything is in the

messages

•Documentation reduced drastically: messages are documented by
themselves

– A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

•Easier to create general clients
– Example: RSS and Atom PUB. Multiple clients can read the same RSS

feed.

64

64

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

