
CHAPTER 10

The Hypermedia Zoo

There are a lot of hypermedia document formats in active use. Some are designed for
very specialized purposes—the people who use them may not even think of them as
hypermedia formats. Other hypermedia formats are in such common usage that people
don’t really think about them at all. In this chapter, I’ll take you on an educational tour
of a “zoo” containing the most popular and most interesting hypermedia formats.

I won’t be going into a lot of technical detail. Any one of these formats probably isn’t
the one you want to use, and I’ve covered many of them earlier in the book. Many of
the formats are still under active development, and their details might change. If you’re
interested in one of the zoo’s specimens, the next step is to read its formal specification.

My goal is to give you a sense of the many forms hypermedia can take, and to show how
many times we’ve tackled the basic problems of representing it. The hypermedia zoo is
so full that you probably don’t need to define a brand new media type for your API. You
should be able to pick an existing media type and write a profile for it.

I’ve organized the hypermedia zoo along the lines of my introduction to hypermedia.
There’s a section for domain-specific formats (a la Chapter 5), a section for formats
whose primary purpose is to implement the collection pattern (a la Chapter 6), and a
section for general hypermedia formats (a la Chapter 7).

For formats like Collection+JSON, which I’ve already covered in some depth, I’ll briefly
summarize the format and point you to the earlier discussion. There are a few hyper‐
media formats that I won’t discuss in this chapter, because they take different approaches
to REST than the one I’ve advocated so far in this book. I’ll cover RDF and its descend‐
ants in Chapter 12, and CoRE Link Format in Chapter 13.

199

www.it-ebooks.info

http://www.it-ebooks.info/

Domain-Specific Formats
These media types are designed to represent problems in one particular domain. Each
defines some very specific application semantics, and although you might be able to use
them to convey different semantics, it’s probably a bad idea.

Maze+XML
• Media type: application/vnd.amundsen.maze+xml
• Defined in: personal standard
• Medium: XML
• Protocol semantics: navigation using GET links
• Application semantics: maze games
• Covered in: Chapter 5

Maze+XML defines XML tags and link relations relating to mazes, cells in mazes, and
the connections between cells. Figure 10-1 gives the state diagram of its protocol se‐
mantics.

Figure 10-1. The protocol semantics of Maze+XML

Maze+XML defines a <link> tag that takes a link relation and defines a safe state tran‐
sition; that is, it allows the client to make a GET request. You can extend Maze+XML
by bringing in custom link relations, or by defining extra XML tags. Since it’s an XML
format, you could also use XForms (q.v.) to represent unsafe state transitions.

I don’t seriously recommend using Maze+XML, even if you happen to be making a maze
game. It’s just an example, and I’m putting it first to serve as an example of how I judge
hypermedia formats.

200 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://amundsen.com/media-types/maze/
http://www.it-ebooks.info/

OpenSearch
• Media type: application/opensearchdescription+xml (pending registration)
• Defined in: consortium standard
• Medium: XML
• Protocol semantics: searching using GET
• Application semantics: search queries
• Covered in: Chapter 6

OpenSearch is a standard for representing search forms. It can be used standalone, or
incorporated into another API using the search link relation. Its state diagram looks
like this:

Here’s a simple OpenSearch representation. The destination of an OpenSearch form
(the template attribute of its <Url> tag) is a string similar to a URI Template (RFC 6570),
though it doesn’t have all of URI Template’s features:

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
 <ShortName>Name search</ShortName>
 <Description>Search the database by name</Description>
 <Url type="application/atom+xml" rel="results"
 template="http://example.com/search?q={searchTerms}"/>
</OpenSearchDescription>

OpenSearch does not define a way to represent the results of a search. You should use
whatever list format fits in with your main representation format.

Problem Detail Documents
• Media type: application/api-problem+json
• Described in: Internet-Draft “draft-nottingham-http-problem”
• Medium: JSON (with rules for automatically converting to XML)
• Protocol semantics: navigation with GET

Domain-Specific Formats | 201

www.it-ebooks.info

http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.it-ebooks.info/

1. describedBy is an IANA-registered link relation that’s a more general version of profile. A resource is
describedBy any resource that sheds any light on its interpretation.

• Application semantics: error reports

A problem detail document describes an error condition. It uses structured, human-
readable text to add custom semantics to HTTP’s status codes. It’s a simple JSON format
designed to replace whatever one-off format you were thinking of designing to convey
your error messages.

Like most JSON-based hypermedia documents, a problem detail takes the form of a
JSON object. Here’s a document that might be served along with an HTTP status code
of 503 (Service Unavailable):

{
 "describedBy": "http://example.com/scheduled-maintenance",
 "supportId": "http://example.com/maintenance/outages/20130533",
 "httpStatus" : 503
 "title": "The API is down for scheduled maintenance.",
 "detail": "This outage will last from 02:00 until 04:30 UTC."
}

Two of these properties are defined as hypermedia links. The describedBy property is
a link to a human-readable explanation of the representation.1

The supportId property is a URL representing this particular instance of the problem.
There’s no expectation that the end user will find anything at the other end of this URL.
It might be an internal URL for use by the API support staff, or it might be a URI, a
unique ID that doesn’t point to anything in particular.

The describedBy and title properties are required; the rest are optional. You can also
add extra properties specific to your API.

SVG
• Media type: image/svg+xml
• Medium: XML
• Protocol semantics: the same as XLink
• Application semantics: vector graphics

SVG is an image format. Unlike a JPEG, which represents an image on the pixel level,
an SVG image is made up of shapes. SVG includes a hypermedia control that lets dif‐
ferent parts of an image link to different resources.

202 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

That hypermedia control is an <a> tag that has the same function as HTML’s <a> tag.
Here’s a simple SVG representation of a cell in Chapter 5’s maze:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">

 <rect x="100" y="80" width="100" height="50" stroke="black" fill="white"/>
 <text x="105" y="105" font-size="10">Foyer of Horrors</text>

 <a xlink:href="/cells/I" xlink:arcrole="http://alps.io/example/maze#north">
 <line x1="150" y1="80" x2="150" y2="40" stroke="black"/>
 <text x="130" y="38" font-size="10">Go North!</text>

 <a xlink:href="/cells/O" xlink:arcrole="http://alps.io/example/maze#east">
 <line x1="200" y1="105" x2="240" y2="105" stroke="black"/>
 <text x="240" y="107" font-size="10">Go East!</text>

 <a xlink:href="/cells/M" xlink:arcrole="http://alps.io/example/maze#west">
 <line x1="100" y1="105" x2="60" y2="105" stroke="black"/>
 <text x="18" y="107" font-size="10">Go West!</text>

</svg>

Figure 10-2 shows how a client might render this document.

Figure 10-2. The SVG representation of a maze cell

SVG makes a good alternative to HTML for building mobile applications. SVG can also
be combined with HTML 5: just stick an <svg> tag into HTML markup to get an inline
SVG image.

SVG’s <a> tag doesn’t actually define any hypermedia capabilities. It’s just a placeholder
tag for XLink’s role and href attributes (q.v.). Since SVG is an XML format, you can
also add XForms forms (q.v.) to SVG, and get protocol semantics comparable to HTML’s.
This is not as useful as embedding SVG into HTML, since it requires a client that un‐
derstands both SVG and XForms.

Domain-Specific Formats | 203

www.it-ebooks.info

http://www.it-ebooks.info/

VoiceXML
• Media type: application/voicexml+xml
• Defined in: W3C open standard, with extensions
• Medium: XML
• Protocol semantics: GET for navigation; arbitrary state transitions through forms:

GET for safe transitions, POST for unsafe transitions
• Application semantics: spoken conversation

In Chapter 5, I made an analogy between an HTTP client navigating a hypermedia API
and a human being navigating a phone tree. Well, a lot of those phone trees are actually
implemented on the backend as hypermedia APIs. The representation format they use
is VoiceXML.

Here’s one possible VoiceXML representation of a cell in Chapter 5’s maze game:

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.1">
 <menu>
 <prompt>
 You are in the Foyer of Horrors. Exits are: <enumerate/>
 </prompt>

 <choice next="/cells/I">
 North
 </choice>

 <choice next="/cells/M">
 East
 </choice>

 <choice next="/cells/O">
 West
 </choice>

 <noinput>Please say one of <enumerate/></noinput>
 <nomatch>You can't go that way. Exits are: <enumerate/></nomatch>
 </menu>
</vxml>

If you’re playing the maze game over the phone, you’ll never see this representation
directly. The VoiceXML “browser” lives on the other end of the phone line. When it
receives this representation, it handles the document by reading the <prompt> aloud to
you: “You are in the Foyer of Horrors. Exits are: north, east, west.”

204 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.w3.org/TR/voicexml20/
http://www.w3.org/TR/voicexml21/
http://www.it-ebooks.info/

Each <choice> tag is a hypermedia link. The browser waits for you to activate a link by
saying something. It uses speech recognition to figure out which link you’re activating.
There’s a validation step: if you say nothing, or you say something that doesn’t map onto
one of the links, the browser reads you an error message (either <noinput> or <no
match>) and waits for input again.

Once you manage to activate a link, the browser makes a GET request to the URL
mentioned in the corresponding next attribute. The server responds with a new
VoiceXML representation, and the browser processes the representation and tells you
which maze cell you’re in now.

The <menu> tag is only the simplest of VoiceXML’s hypermedia controls. There’s also a
<form> tag that uses a speech recognition grammar to drive a GET or POST request
based on what you tell it. Here’s a VoiceXML form for flipping the mysterious switches
I defined in Chapter 7:

<form id="switches">
 <grammar src="command.grxml" type="application/srgs+xml"/>

 <initial name="start">
 <prompt>
 There is a red switch and a blue switch here. The red switch is
 up and the blue switch is down.

 What would you like to do?
 </prompt>
 </initial>

 <field name="command">
 <prompt>
 Would you like to flip the red switch, flip the blue switch, or
 forget about it?
 </prompt>
 </field>

 <field name="switch">
 <prompt>
 Say the name of a switch.
 </prompt>
 </field>

 <filled>
 <submit next="/cells/I" method="POST" namelist="command switch"/>
 </filled>
</form>

The <grammar> tag is an inline link analogous to an HTML or <script> tag. It
automatically imports a document written in a format set down by the W3C’s Speech

Domain-Specific Formats | 205

www.it-ebooks.info

http://www.it-ebooks.info/

2. Defined here.

Recognition Grammar Specification.2 I won’t show the SRGS file here, because SRGS is
not a hypermedia format. Suffice to say that when you say the words “flip the red switch,”
or “forget about it,” the SRGS grammar is what allows the VoiceXML browser to trans‐
form those words into a set of key-value pairs that match the form fields command and
switch:

command=flip
switch=red switch

Once the fields are filled in with values obtained through speech recognition, the <sub
mit> tag tells the VoiceXML browser how to format an HTTP POST request. It looks
just like an HTML form submission:

POST /cells/I HTTP/1.1
Content-Type: application/x-www-form-urlencoded

command=flip&switch=red%20switch

A VoiceXML document resembles nothing so much as programming language code.
VoiceXML uses idioms from programming to represent the flow of conversation
through a dialog tree: <goto> to jump from one part of the dialog to another, <if> to
represent a conditional, and even <var> to assign a value to a variable.

Collection Pattern Formats
The three standards in this section have similar application and protocol semantics,
because they all implement the collection pattern I laid out in Chapter 6. In the collection
pattern, certain resources are designated “item” resources. An item usually responds to
GET, PUT, and DELETE, and its representation focuses on representing structured bits
of data. Other resources are designated “collection” resources. A collection usually re‐
sponds to GET and POST-to-append, and its representation focuses on linking to item
resources.

These three standards take different approaches to the collection pattern; they may not
use the terms “collection” or “item,” but they all do pretty much the same thing.

Collection+JSON
• Media type: application/vnd.amundsen.collection+json
• Defined in: personal standard
• Medium: JSON

206 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.w3.org/TR/speech-grammar/
http://amundsen.com/media-types/collection/
http://www.it-ebooks.info/

• Protocol semantics: collection pattern (GET/POST/PUT/DELETE), plus search‐
ing (using GET)

• Application semantics: collection pattern (“collection” and “item”)
• Covered in: Chapter 6

Collection+JSON was designed as a simple JSON-based alternative to the Atom Pub‐
lishing Protocol (q.v.). It’s a formalized, hypermedia-aware version of the API developers
tend to design their first time through the process. Figure 10-3 shows its protocol se‐
mantics.

Figure 10-3. The protocol semantics of Collection+JSON

The Atom Publishing Protocol
• Media types: application/atom+xml, application/atomsvc+xml, and applica
tion/atomcat+xml

• Defined in: RFC 5023 and RFC 4287
• Medium: XML
• Protocol semantics: collection pattern (GET/POST/PUT/DELETE); well-defined

extensions add searching and other forms of navigation, all using GET links or
forms

• Application semantics: collection pattern (feed and entry); entries have the se‐
mantics of blog posts (author, title, category, etc.); an entry that is not an Atom
document (e.g., a binary graphic) is split into a binary Media Entry and an Atom
Entry that contains metadata

• Covered in: Chapter 6

Collection Pattern Formats | 207

www.it-ebooks.info

http://www.it-ebooks.info/

The original API standard, AtomPub pioneered the collection pattern and the RESTful
approach to APIs in general. As an XML-based standard in a field now dominated by
JSON representations, AtomPub now looks somewhat old-fashioned, but it inspired
several other standards and link relations that can be used with other hypermedia for‐
mats. Figure 10-4 shows its protocol semantics.

Figure 10-4. The protocol semantics of AtomPub

Although Atom’s application semantics imply that it should be used only for news-feed
applications like blogging and content management APIs, the standard is very exten‐
sible. Perhaps the most notable extension is the Google Data Protocol, the foundation
of Google’s API platform. Google adds domain-specific tags to AtomPub to describe
the application semantics of each of its sites. An Atom feed becomes a collection of
videos (the YouTube API) or a collection of spreadsheet cells (Google Spreadsheets).

If you think your application semantics won’t fit into the collection pattern, a look at
Google’s API directory may convince you otherwise. The Google Data Protocol also
defines a JSON equivalent to AtomPub’s XML representations, though this is a fiat
standard, not something you’re invited to reuse.

Several open standards define AtomPub extensions, including the Atom Threading
Extensions and the deleted-entry element. I covered these in Chapter 6.

OData
• Media type: application/json;odata=fullmetadata
• Defined in: open standard in progress
• Medium: JSON for some parts, XML for others

208 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

https://developers.google.com/gdata/docs/directory
http://www.odata.org/docs
http://www.it-ebooks.info/

• Protocol semantics: modified collection pattern (GET/POST/PUT/DELETE) with
PATCH for partial updates and GET for queries; arbitrary state transitions with
forms (GET for safe transitions, and POST for unsafe transitions)

• Application semantics: collection pattern (feed and entry)

The semantics of OData are heavily inspired by the Atom Publishing Protocol. In fact,
an OData API can serve Atom representations, and a client can treat an OData API as
an AtomPub API with a whole lot of extensions. But I’ll be considering OData as an
API that serves mostly JSON representations.

Figure 10-5 shows a view of OData’s protocol semantics, simplified to show only the
parts of OData I’ll be covering here. And here’s an OData representation of a collection
from a microblogging API, similar to Chapter 2’s You Type It, We Post It:

{
 "odata.metadata":
 "http://api.example.com/YouTypeItWePostIt.svc/$metadata#Posts",
 "value": [
 {
 "Content": "This is the second post.",
 "Id": 2,
 "PostedAt": "2013-04-30T03:34:12.0992416-05:00",
 "PostedAt@odata.type": "Edm.DateTimeOffset",
 "PostedBy@odata.navigationLinkUrl": "Posts(2)/PostedBy",
 "odata.editLink": "Posts(2)",
 "odata.id": "http://api.example.com/YouTypeItWePostIt.svc/Posts(2)",
 "odata.type": "YouTypeItWePostIt.Post"
 },
 {
 "Content": "This is the first post",
 "Id": 1,
 "PostedAt": "2013-04-30T04:14:53.0992416-05:00",
 "PostedAt@odata.type": "Edm.DateTimeOffset",
 "PostedBy@odata.navigationLinkUrl": "Posts(1)/PostedBy",
 "odata.editLink": "Posts(1)",
 "odata.id": "http://api.example.com/YouTypeItWePostIt.svc/Posts(1)",
 "odata.type": "YouTypeItWePostIt.Post"
 },
 "#Posts.RandomPostForDate": {
 "title": "Get a random post for the given date",
 "target": "Posts/RandomPostForDate"
 }
}

Collection Pattern Formats | 209

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-5. The protocol semantics of OData (simplified)

Like the other JSON-based formats we’ve seen, OData representations are JSON objects
whose properties are named with short, mysterious strings. A property like Content or
PostedAt is ordinary JSON data, and its name acts as a semantic descriptor. A property
whose name includes the odata. prefix is a hypermedia control or some other bit of
OData-specific metadata. Some examples from this document:

• The property odata.id contains a unique ID—that is, a URI—for one specific
entry-type resource.

• The property PostedAt@odata.type contains semantic type information for the
value of the PostedAt property. The type, Edm.DateTimeOffset, refers to OData’s
schema format: the Entity Data Model.

• The property odata.editLink acts like an AtomPub link with rel="edit". If you
want to modify or delete one of the example posts, you can send a PUT, PATCH,
or DELETE request to the relative URL Posts(2) or Posts(1).

• The property PostedBy@odata.navigationLinkUrl contains a hypermedia link to
another resource. The application-specific part of the property name, PostedBy,
serves as a link relation. In human terms, this is a link to the user who published
this particular post.

The protocol semantics of OData resources repeat what you’ve already seen in Collec‐
tion+JSON and AtomPub. A collection resource supports GET (to get a representation)
and POST (to append a new entry to the collection). Entry-type resources support GET,
as well as (via their odata.editLink) PUT, DELETE, and PATCH.

Filtering
OData also defines a set of implicit protocol semantics for filtering and sorting a col‐
lection, using a query language similar to SQL. If you know you have the URL to an
OData collection, you can manipulate that URL in a wide variety of ways. Sending GET

210 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

3. All of these URLs need to be URL-encoded, obviously. I’ve left them unencoded for the sake of clarity.

to the resulting URLs will yield representations that filter and paginate the collection in
different ways.

I say these protocol semantics are implicit because you don’t have to look for a hyper‐
media form that tells you how to make the HTTP request that carries out a particular
search. You can construct that request based on rules found in the OData spec.

Let’s look at a few examples. Suppose the (relative) base URL of the microblog collection
is /Posts. You don’t need a hypermedia form to tell you how to search for blog posts that
include the string “second” in their Content property. You can build the URL yourself3:

 /Posts$filter=substringof('second', Content)

You can search for posts that include “second” in their Content and were PostedBy a
resource whose Username property is “alice”:

/Posts$filter=substringof('second', Content)+ and +PostedBy/Username eq 'alice')

You can pick up only the last five posts that were published in the year 2012:

/Posts$filter=year(PostedAt) eq 2012&$top=5

Want to get the second page of that list? You don’t need to look for a link with the relation
next in the representation. The URL you should use is defined by the OData spec:

/Posts$filter=year(PostedAt) eq 2012&$top=5&skip=5

By default, the microblog collection presents entries in reverse chronological order
based on the value of the PostedAt property. If you want to use chronological order
instead, the OData spec explains what URL you should use:

/Posts$orderBy=PostedAt asc

In the other collection-pattern standards, the server must serve a hypermedia control
to explicitly describe each allowable family of searches. Collection+JSON serves search
templates, AtomPub serves OpenSearch forms. An OData collection doesn’t need to
provide this information because every OData collection implicitly supports the entire
OData query protocol. A client doesn’t need a hypermedia form to know it’s OK to send
GET requests to certain URLs. The OData format itself puts additional constraints on
the server that guarantee that certain URLs will work.

OData defines a few more bits of implicit protocol semantics, mostly pertaining to the
relationships between resources. I won’t be covering them here.

Functions and the metadata document
In addition to the impressive set of state transitions implicitly defined by OData’s query
protocol, an OData representation may include explicit hypermedia controls describing

Collection Pattern Formats | 211

www.it-ebooks.info

http://www.it-ebooks.info/

4. For more information on CSDL, go to the OData website.

any state transition at all. These controls have protocol semantics similar to HTML
forms. Safe transitions are called “functions,” and they use HTTP GET. Unsafe transi‐
tions are called “actions,” and they use HTTP POST. I’ll be focusing on functions, but
actions work the same way.

Here’s a simple OData form that takes a date as input. It triggers a state transition where
the server looks at all of a microblog’s entries from the given date, picks one at random,
and serves a representation of it.

"#Posts.RandomPostForDate": {
 "title": "Get a random post for the given date",
 "target": "Posts/RandomPostForDate"
 },

If this was a simple query like “all the microblog entries from a given date,” the form
wouldn’t be necessary. The state transition would be implicitly described by OData’s
query protocol. But that protocol can’t express the concept of “random selection,” so
this state transition must be described explicitly, using a hypermedia form. Now, here’s
a question: can you look at this form and figure out which HTTP request to make?

It’s a trick question. You can’t figure it out, because I didn’t show you the whole form.
The part of the form gives you the base URL to use (Posts/RandomPostforDate), but it
doesn’t explain how to format your contribution—the date for which you want a random
post. It’s equivalent to this HTML form:

<form action="Posts/RandomPostForDate" method="GET">
 <input class="RandomPostForDate" type="submit"
 value="Get a random post for the given date."/>
</form>

That’s obviously incomplete. It’s missing a formal description for “the given date.” What
format should “the given date” take? What’s its semantic descriptor? Do you trigger the
state transition by sending GET to Posts/RandomPostforDate?Date=9/13/2009, or to
Posts/RandomPostForDate?the_date_to_use=13%20August%202009, or to Posts/
RandomPostForDate?when=yesterday? You just don’t have that information.

In the HTML example, the missing information should go into a second <input> tag
within the <form> tag. But with OData, that information is kept in a different document
—a “metadata document” written not in JSON but in XML, using a vocabulary called
the Comma Schema Definition Language (CSDL).4

An OData representation links to its metadata document using the odata.metadata
property

{
 "odata.metadata":

212 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.odata.org/documentation/odata-v3-documentation/common-schema-definition-language-csdl/
http://www.it-ebooks.info/

5. The EDM is defined in the same document as CSDL.

 "http://api.example.com/YouTypeItWePostIt.svc/$metadata#Posts",
 ...
}

Here’s the part of the metadata document that completes the definition of the Random
PostForDate state transition:

<FunctionImport Name="RandomPostforDate" EntitySet="Posts"
 IsBindable="true" m:IsAlwaysBindable="false"
 ReturnType="Post" IsSideEffecting="false">
 <Parameter Name="date" Type="Edm.DateTime" Mode="In" />
</FunctionImport>

Now you know the whole story. You trigger the state transition RandomForDate by for‐
matting a date as a string, in a format defined by OData’s Entity Data Model.5 You know
that this state transition is safe, because its CSDL description has the IsSideEffect
ing attribute set to false. That means you should trigger the state transition with a GET
request rather than with POST.

Combine the metadata document with the OData representation, and you have all the
information necessary to trigger the state transition RandomPostForDate. You send an
HTTP request that looks something like this:

GET /YouTypeItWePostIt.svc/Posts/RandomPostForDate?date=datetime'2009-08-13T12:↵
00' HTTP/1.1
Host: api.example.com

Although RandomPostForDate is a simple transition, OData state transitions can get
very complicated. The metadata document stores the messy details that explain exactly
how to trigger whatever state transitions you might find mentioned in an OData docu‐
ment. This saves the server from having to include a complete description of a complex
state transition in every representation that supports it. A client that’s interested in a
given state transition can look up a complete description of it.

Metadata documents as service description documents
I’ve presented OData in a way that makes it look like Collection+JSON or Siren. A
microblog post is represented as a JSON object containing data fields like DatePublish
ed, along with hypermedia controls and other “metadata” explaining the possible next
steps.

That’s the version of OData I recommend, and it has the media type application/
json;odata=fullmetadata. But there’s another way to write down an OData document:
a way that keeps all the hypermedia controls, not just the complicated ones, in the
metadata document.

Collection Pattern Formats | 213

www.it-ebooks.info

http://www.it-ebooks.info/

The media type of such a document is application/json;odata=minimalmetadata.
Here’s what a representation of the microblog would look like in this format:

{
 "odata.metadata":
 "http://api.example.com/YouTypeItWePostIt.svc/$metadata#Posts",
 "value": [
 {
 "Content": "This is the first post.",
 "Id": 1,
 "PostedAt": "2013-04-30T01:42:57.0901805-05:00"
 },
 {
 "Content": "This is the second post.",
 "Id": 2,
 "PostedAt": "2013-04-30T01:45:03.0901805-05:00"
 },
]
}

That’s a lot smaller, but in the world of REST, smaller isn’t necessarily better. Where’d
the metadata go? What happened to PostedBy@odata.navigationLinkUrl and
#Posts.RandomPostForDate? How are you supposed to decide which HTTP request to
make next?

All of that information went into the CSDL document at the other end of the oda
ta.metadata link. I showed you part of the CSDL document earlier when I was dis‐
cussing RandomPostForDate, but here’s a bit more of it (this excerpt shows what hap‐
pened to PostedBy and RandomPostForDate):

<edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx">
 <edmx:DataServices
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 m:DataServiceVersion="3.0" m:MaxDataServiceVersion="3.0">

 <Schema Namespace="YouTypeItWePostIt">
 <EntityType Name="Post">
 <Key><PropertyRef Name="Id"/></Key>
 <Property Name="Id" Type="Edm.Int32" Nullable="false"/>
 <Property Name="Content" Type="Edm.String"/>
 <Property Name="PostedAt" Type="Edm.DateTimeOffset" Nullable="false"/>
 <NavigationProperty Name="PostedBy"
 Relationship="YouTypeItWePostIt.Post_PostedBy"
 ToRole="PostedBy" FromRole="Post"/>
 </EntityType>

 ...

 <EntityContainer Name="YouTypeItWePostItContext"
 m:IsDefaultEntityContainer="true">

214 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

 <EntitySet Name="Posts" EntityType="YouTypeItWePostIt.Post"/>

 <FunctionImport Name="RandomPostforDate" EntitySet="Posts"
 IsBindable="true" m:IsAlwaysBindable="false"
 ReturnType="Post" IsSideEffecting="false">
 <Parameter Name="date" Type="Edm.DateTime" Mode="In" />
 </FunctionImport>

 <EntitySet Name="Users" EntityType="YouTypeItWePostIt.User"/>

 </EntityContainer>

 ...

 </Schema>
 </edmx:DataServices>
</edmx:Edmx>

There’s nothing wrong with keeping extra information about a resource outside of that
resource’s representation. After all, that’s what a profile or a JSON-LD context does. The
problem here is that the CSDL document can be seen as a service description document:
an overview of the API as a whole that makes it look like a relational database.

As I mentioned in Chapter 9, users who see a document like this have a tendency to
automatically generate client code based on it. Doing this creates a tight coupling be‐
tween the generated client and this specific edition of the service description. If the
server implementation changes, the CSDL document will change along with it, but the
clients won’t change to match. They’ll just break.

Fortunately, no one is making you use OData this way. If you use the media type appli
cation/json;odata=fullmetadata, your OData representations will contain their own
hypermedia controls. A client will only need to consult the CSDL metadata document
when it needs to trigger a complicated state transition—a function or action—that can’t
be completely described with OData.

Pure Hypermedia Formats
These media types have very generic application semantics, or else they have no appli‐
cation semantics at all. They focus on representing the protocol semantics of HTTP. You
provide your own application semantics, by plugging link relations and semantic de‐
scriptors into predefined slots.

HTML
• Media types: text/html and application/xhtml+xml
• Defined in: open standards for HTML 4, for XHTML, and for HTML 5

Pure Hypermedia Formats | 215

www.it-ebooks.info

http://www.w3.org/TR/html401/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/html5/
http://www.it-ebooks.info/

• Medium: XML-like
• Protocol semantics: navigation through GET links; arbitrary state transitions

through forms (GET for safe transitions, POST for unsafe transitions)
• Application semantics: human-readable documents (“paragraph,” “list,” “table,”

“section,” etc.)
• Covered in: Chapter 7

The original hypermedia format, and a highly underrated choice for an API. HTML can
make direct use of microformats and microdata, instead of using an approximation such
as an ALPS profile. HTML’s <script> tag lets you embed executable code to be run on
the client, a feature of RESTful architectures (“code on demand”; see Appendix C) not
supported by any other hypermedia format. And HTML documents can be graphically
displayed to human beings—invaluable for APIs designed to be consumed by an Ajax
or mobile client, and useful when debugging any kind of API.

Here’s HTML’s state diagram:

HTML comes in three flavors. HTML 4 has been the stable standard since 1997. HTML
5, its replacement, is still under development. There’s also XHTML, an HTML-like
format that happens to be valid XML.

As far as this book is concerned, the only important differences between these three
standards are HTML 5’s new rules for client-side input validation, and the fact that
HTML 5 will eventually support microdata.

HAL
• Media types: application/hal+json and application/hal+xml
• Defined in: the JSON version is defined in the Internet-Draft “draft-kelly-json-hal”;

the XML version is defined in a [personal standard here]
• Medium: Either XML or JSON
• Protocol semantics: arbitrary state transitions through links that may use any

HTTP method; links do not mention the HTTP method to be used—that’s kept in
human-readable documentation

• Application semantics: none to speak of

216 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

• Covered in: Chapter 7

HAL is a minimalist format. Its state diagram is so generic it looks like something out
of the HTTP specification:

HAL relies on custom link relations (and their human-readable explanations in profiles)
to do the heavy lifting.

Siren
• Media types: application/vnd.siren+json
• Defined in: personal standard
• Medium: JSON (an XML version is planned)
• Protocol semantics: navigation through GET links; arbitrary state transitions

through “actions” (GET for safe actions, POST/PUT/DELETE for unsafe actions)
• Application semantics: very generic

A Siren document describes an “entity,” a JSON object that has approximately the same
semantics as HTML’s <div> tag. An entity may have a “class” and a list of “properties.”
It may contain a list of “links,” which work like HTML <a> tags (with a rel and an
href). It may also contain a list of actions, which work like HTML <form> tags (with
a name, an href, a method, and a number of fields).

An entity may also have some number of subentities, similar to how one <div> tag may
contain another. You can implement the collection pattern this way.

Siren’s state diagram looks like a cross between HAL’s and HTML’s:

Pure Hypermedia Formats | 217

www.it-ebooks.info

https://github.com/kevinswiber/siren
http://www.it-ebooks.info/

The Link Header
• Media type: n/a
• Described in: RFC 5988
• Medium: HTTP header
• Protocol semantics: navigation through GET links
• Application semantics: none
• Covered in: Chapter 4

The Link header is not a document format, but I’m putting it in the zoo because it lets
you add simple GET links to representations that lack hypermedia controls, like binary
images or JSON documents. The header’s rel parameter is a slot for the link relation:

Link: <http://www.example.com/story/part2>;rel="next"

RFC 5988 defines some other useful parameters for the Link header, including type
(which gives a hint as to the media type at the other end of the link) and title (which
contains a human-readable title for the link).

As far as I’m concerned, the most important use of the Link header is to connect a JSON
document with a profile. JSON is incredibly popular despite having no hypermedia
controls, and the application/json media type doesn’t support the profile parameter,
so Link is the only reliable way to point to the profile that explains what a JSON docu‐
ment means.

Content-Type: application/json
Link: <http://www.example.com/profiles/hydraulics>;rel="profile"

The Location and Content-Location Headers
• Media type: n/a
• Described in: RFC 2616
• Medium: HTTP header
• Protocol semantics: depends on the HTTP response code
• Application semantics: none
• Covered in: Chapter 1, Chapter 2, Chapter 3, Appendix B

Here are two simple hypermedia controls defined in the HTTP standard itself. I’ve
mentioned Location in passing, but I’ll give both detailed coverage in Appendix B.

The Content-Location header points to the canonical location of the current resource.
It’s equivalent to a link that uses the IANA-registered link relation canonical.

218 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

The Location header is used as an all-purpose link whenever the protocol semantics of
an HTTP response demand a link. The exact behavior depends on the HTTP status
code. When the response code is 201 (Created), the Location header points to a newly
created resource. But when the response code is 301 (Moved Permanently), the Loca
tion header points to the new URL of a resource that moved. Again, the details are in
Appendix B.

URL Lists
• Media type: text/uri-list
• Medium: none
• Described in: RFC 2483
• Protocol semantics: none
• Application semantics: none

A text/uri-list document is just a list of URLs:

http://example.org/
https://www.example.com/
...

This is probably the most basic hypermedia type ever devised. It doesn’t support link
relations, so there’s no way to express the relationship between these URLs and the
resource that served the list. There are no explicit hypermedia controls, so the client has
no way of knowing what kind of requests it’s allowed to send to these URLs. The best
you can do is send a GET request to each and see what kind of representations you get.

JSON Home Documents
• Media type: application/json-home
• Described in: Internet-Draft “draft-nottingham-json-home”
• Medium: JSON
• Protocol semantics: completely generic
• Application semantics: none

JSON Home Documents are a more sophisticated version of URL lists. The format is
intended for use as the “home page” of an API, listing all the resources provided and
their behavior under the HTTP protocol.

A JSON Home Document is a JSON object. The keys are link relations, and the values
are JSON objects known as “Resource Objects.” Here’s an example from the world of
the maze game:

Pure Hypermedia Formats | 219

www.it-ebooks.info

http://www.it-ebooks.info/

{
 "east": { "href": "/cells/N" },
 "west": { "href": "/cells/L" }
}

A Resource Object is a hypermedia control that describes the protocol semantics of a
resource, or a group of related resources. Here’s a search form, described by a URI
Template:

{
 "search": {"href-template": "/search{?query}",
 "href-vars": {
 "query" : "http://alps.io/opensearch#searchTerms"
 }
}

A Resource Object may include “resource hints” that describe its protocol semantics in
more detail. The most common hint is allow, which explains which HTTP methods
the resource will respond to. Here’s a JSON Home Document that uses the flip link
relation I defined for my extension of the maze game:

{
 "flip": { "href": "/switches/4",
 "hints": { "allow": ["POST"] }
 }
}

A JSON Home Document says nothing about the application semantics of the resources
it links to. That information is kept in the representations on the other side of the links.

By combining a JSON Home Document (which describes an API’s protocol semantics)
with an ALPS document (which describes its application semantics), you can take an
existing API—even one that doesn’t use hypermedia—and move most of its human-
readable documentation into a structured, machine-readable format.

The Link-Template Header
• Media type: n/a
• Described in: Internet-Draft “draft-nottingham-link-template” (see also RFC

6570)
• Medium: HTTP header
• Protocol semantics: navigation through GET
• Application semantics: none

The Link-Template header works exactly the same way as the Link header, except its
value is interpreted as a URI Template (RFC 6570) instead of as a URL. Here’s a search
form in an HTTP header:

220 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

Link-Template: </search{?family-name}>; rel="search"

The Link-Template header has a special variable called var-base, which allows you to
specify a profile for the variables in the URI Template. In the example, the variable name
family-name is suggestive of what kind of value you should plug into the variable, but
it doesn’t technically mean anything. It might as well be called put-something-here.
Add a var-base, and suddenly there’s a link to a formal definition of family-name.

Link-Template: </search{?family-name}>; rel="search";↵
var-base="http://alps.io/microformats/hCard#"

Now the variable family-name expands to the URL http://alps.io/microformats/
hCard#family-name. The ALPS document at the other end of that URL explains the
application semantics of the family-name variable.

Here’s another example that uses schema.org’s application semantics instead of ALPS:

Link-Template: </search{?familyName}>; rel="search"; var-base="http://schema.org/"

Here, the variable familyName expands to the URL http://schema.org/familyName,
which means basically the same thing as http://alps.io/microformats/hCard#family-
name.

As of this writing, the Internet-Draft defining the Link-Template header has expired.
The author of the draft, Mark Nottingham, told me to go ahead and put it in the book
anyway. He said he’ll revive the Internet-Draft if more people become interested in
Link-Template.

WADL
• Media type: application/vnd.sun.wadl+xml
• Defined in: open standard
• Medium: XML
• Protocol semantics: completely generic
• Application semantics: none, minimal support for extensions

WADL was the first hypermedia format to support a complete set of protocol semantics.
A WADL <request> tag (analogous to an HTML form) can describe an HTTP request
that uses any method, provides values for any specified HTTP request headers, and
includes an entity-body of any media type. Like AtomPub, this doesn’t sound very special
now, but it was groundbreaking at the time. WADL can describe the protocol semantics
of any web API, even one that’s poorly designed and violates the HTTP standard.

Here’s a snippet of WADL that explains how to flip a switch in Chapter 7’s version of
the maze game:

Pure Hypermedia Formats | 221

www.it-ebooks.info

http://www.w3.org/Submission/wadl/
http://www.it-ebooks.info/

6. The JSON Pointer standard, defined in the Internet-Draft appsawg-json-pointer, may fix this.

<method id="flip" name="POST" href="/switches/4">
 <doc>Flip the switch</doc>
</method>

WADL can also describe the content of XML representations. A WADL document can
point out which parts of a representation are interesting—notably, which parts are links
to other resources. A WADL document can bring in an XML Schema document to
explain the data types of the XML data it describes. This is useful when an XML repre‐
sentation has no associated schema of its own.

WADL’s <doc> tag makes it a basic profile format, capable of describing the application
semantics of an HTTP request or the inside of an XML representation. But WADL can’t
describe the inside of a JSON representation at all.6

WADL is not in widespread use, but there are some Java JAX-RS implementations that
generate WADL descriptions of APIs. Therein lies the problem. An automatically gen‐
erated description of an API is likely to be tightly coupled to the server-side implemen‐
tation. What’s more, an API that uses WADL typically serves one enormous WADL
document describing the protocol semantics of the entire API.

This is a service description document, and as I mentioned in Chapter 9 , it encourages
users to create automatically generated clients, based on the assumption that they’ve
obtained a complete and unchanging overview of the API’s semantics.

But APIs change. When that happens, the WADL description of the API will also change,
but the automatically generated clients will not. The clients will break.

XLink
• Media type: n/a
• Defined in: W3C standard
• Medium: XML documents
• Protocol semantics: navigation and transclusion with GET
• Application semantics: none

XLink is a plug-in standard that lets you add hypermedia links to any XML document.
Unlike HTML and Maze+XML, XLink doesn’t define special XML tags that represent
hypermedia links. XLink defines a family of attributes that can be applied to any XML
tag to turn that tag into a link.

Here’s an ad hoc XML representation of a cell in the maze game. The <root> and
<direction> tags are tag names I made up for demonstration purposes—they have no

222 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.w3.org/TR/xlink11/
http://www.it-ebooks.info/

hypermedia capabilities of their own, but I can turn them into links by adding XLink
attributes.

<?xml version="1.0"?>
<root xmlns:xlink="http://www.w3.org/1999/xlink">
 <direction
 xlink:href="http://maze-server.com/maze/cell/N"
 xlink:title="Go east!"
 xlink:arcrole="http://alps.io/example/maze/#east"
 xlink:show="replace"
 />

<link
 xlink:href="http://maze-server.com/maze/cell/L"
 xlink:title="Go west!"
 xlink:arcrole="http://alps.io/example/maze/#west"
 xlink:show="replace"
 />
</root>

The href and title attributes should look familiar. The link relation goes into the
optional arcrole attribute. There’s a slight twist here: the arcrole attribute only sup‐
ports extension link relations—the ones that look like URLs. Your link relation can’t
look like author or east; it has to look like http://alps.io/maze/#west.

The show attribute lets you switch between a navigation link that works like HTML’s <a>
tag (show="replace", the default) and an embedding link that works like HTML’s
tag (show="embed"). The HTTP method used is always GET.

With XLink, I can give an ad hoc XML vocabulary approximately the same hypermedia
capabilities that were designed into Maze+XML. There are a few advanced features of
XLink I haven’t covered: notably, the extended link type, which lets you connect more
than two resources using a single link, and the role attribute, which I’ll show off in
Chapter 12.

XForms
• Media type: n/a
• Medium: XML documents.
• Protocol semantics: arbitrary state transitions through forms (GET for safe tran‐

sitions, POST/PUT/DELETE for unsafe transitions)
• Application semantics: none

XForms does for hypermedia forms what XLink does for links. It’s a plug-in standard
that adds HTML-like forms to any XML document. Unlike XLink, though, it does define
its own tags. Here’s how XForms might represent a simple search form:

Pure Hypermedia Formats | 223

www.it-ebooks.info

http://www.it-ebooks.info/

7. The tutorial is available at this w3.org page.

<xforms:model>
 <xforms:submission action="http://example.com/search" method="get"
 id="submit-button"/>
 <xforms:instance>
 <query/>
 </xforms:instance>
<xforms:model>

The <model> tag is a container, like HTML’s <form> tag. The <submission> tag explains
what HTTP request to make: in this case, a GET request to http://example.com/search.
The children of the <instance> tag explain how to construct the query string (for a
GET request) or the entity-body (for a POST or PUT request).

The <query> tag is one I made up for this example; it represents a form field called
query. The meaning of this tag—e.g., whether it’s a text field or a checkbox—is defined
separately, in an XForms <input> tag:

<xforms:input ref="query">
 <xforms:label>Search terms</xforms>
</xforms:input>

<xforms:submit submission="submit-button">
 <label>Search!</label>
</xforms:submit>

The <input> tag with ref="query" says that the query field is a text input with a human-
readable <label>. The <submit> tag gives a <label> to the submit button. Together,
the <model> tag and the two <input> tags approximate the functionality of this HTML
form:

<form action="http://example.com/search" method="GET">
 <input type="text" name="query"/>
 <label for="query">Search terms</label>
 <submit value="Search!">
</form>

This is a very basic example; there are many advanced features of XForms that I won’t
be covering. The W3C’s tutorial “XForms for XHTML Authors”7 uses HTML forms to
explain XForms in some detail, going beyond the capabilities of pure HTML into some
of the advanced features of XForms.

GeoJSON: A Troubled Type
We’ve seen the healthy specimens in the hypermedia zoo. Now I’d like to take a look at
GeoJSON, a domain-specific document format with some design flaws that hurt its

224 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.it-ebooks.info/

8. These flaws don’t hurt GeoJSON so much that no one uses it. It’s pretty popular—just not as good as it could
be.

usability in APIs.8 I’m not doing this to pick on GeoJSON; I’ve made exactly the same
mistakes myself. They’re common mistakes, so even if GeoJSON doesn’t sound like
something you need to learn about right now, stick around.

GeoJSON is a standard based on JSON, designed for representing geographic features
like points on a map. Here are its stats:

• Media type: application/json
• Defined in: corporate standard defined here
• Medium: JSON
• Protocol semantics: GET for transclusion of coordinate systems
• Application semantics: geographic features and collections of features

Like almost all JSON-based documents used in APIs, a GeoJSON document is a JSON
object that must contain certain properties. Here’s a GeoJSON document that pinpoints
the location of an ancient monument on Earth:

{
 "type": "FeatureCollection",
 "features":
 [
 {
 "type": "Feature",

 "geometry":
 {
 "type": "Point",
 "coordinates": [12.484281,41.895797]
 },

 "properties":
 {
 "type": null,
 "title": "Column of Trajan",
 "awmc_id": "91644",
 "awmc_link": "http://awmc.unc.edu/api/omnia/91644",
 "pid": "423025",
 "pleiades_link": "http://pleiades.stoa.org/places/423025",
 "description": "Monument to the emperor Marcus Ulpius Traianus"}
 }
]
}

GeoJSON: A Troubled Type | 225

www.it-ebooks.info

http://www.geojson.org/geojson-spec.html
http://www.it-ebooks.info/

9. An industry standard, but from a different industry than the rest of the standards mentioned in this book.
You can get a PDF version of the standard at this page.

I adapted this representation slightly from the real-world API provided by UNC’s An‐
cient World Mapping Center. GeoJSON’s application semantics are simple, and it should
be fairly easy for a human to understand the document. It represents a collection called
a FeatureCollection. The collection only contains one item: a Feature, which has a
geometry (a single Point on the map) and a bunch of miscellaneous properties like
the human-readable description.

A quick look at the GeoJSON standard reveals that instead of a Point, the geometry
could have been a LineString (representing a border or a road) or a Polygon (repre‐
senting the area of a city or country).

GeoJSON Has No Generic Hypermedia Controls
Unfortunately, GeoJSON’s protocol semantics are anything but straightforward. Do you
see awmc_link and pleiades_link in that representation? They look like hypermedia
links, but they’re not. According to the GeoJSON standard, those are just strings that
happen to look like URLs. When the Ancient World Mapping Center designed their
GeoJSON API, they had to stuff all their links into the properties list, because GeoJSON
doesn’t define hypermedia controls for them. This means a generic GeoJSON client can’t
follow the pleiades_link, or even recognize it as a link. To follow that link, you’ll need
to write a client specifically for the Ancient World Mapping Center’s API.

If GeoJSON didn’t define any hypermedia controls, this would be understandable. Not
every data format has to be a hypermedia format. I simply wouldn’t mention GeoJSON
in this book. The odd thing is that GeoJSON does define a hypermedia control, but it
can only be used for one specific thing: changing the coordinate system in use.

By default, the coordinates in a GeoJSON representation ([12.484281,41.895797]) are
measured in degrees of longitude and latitude—a system we’re all familiar with. Since
the planet Earth is not a perfect sphere, these measurements are interpreted according
to a standard called WGS84,9 which lays down things like the approximate shape of
Earth, the location of the prime meridian, and what “sea level” means.

If you’re not a map geek, you can assume Earth is a sphere and be done with it. But for
map geeks, WGS84 is just a default. There are many other coordinate systems you could
use. British readers may be familiar with the Ordnance Survey National Grid, a coor‐
dinate system that uses “easting” and “northing” instead of latitude and longitude, and
that can only represent points within a specific 700-by-1300-kilometer area that covers
the British Isles. There are infinitely many coordinate systems, since you can define a
system that puts Earth’s prime meridian wherever you want.

226 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html
http://awmc.unc.edu/
http://awmc.unc.edu/
http://www.it-ebooks.info/

And now our story comes back to hypermedia, because this is what GeoJSON’s sole
hypermedia control is for. GeoJSON lets you link to a description of the coordinate
system you’re using.

Here’s a GeoJSON document containing a genuine hypermedia link that any GeoJSON
client will recognize as such:

{
 "type":"Feature",
 "geometry":
 {
 "type":"Point",
 "coordinates":[60000,70000]
 },

 "crs": {
 "type": "link",
 "properties": {
 "href": "http://example.org/mygrid.wkt",
 "type": "esriwkt"
 }
 }
}

The coordinates [60000,70000] are not valid measurements of longitude and latitude,
but that’s fine, because we’re not using longitude and latitude. We’re using a custom
coordinate reference system (crs) described by the resource at http://example.org/
mygrid.wkt. This is exactly the sort of thing hypermedia is good for. The problem with
GeoJSON is that the only place it allows a link is within the definition of a coordinate
reference system.

This state diagram describes GeoJSON’s protocol semantics:

That’s not very useful! Most GeoJSON APIs don’t use custom coordinate systems—we’re
all used to ordinary longitude and latitude. But the GeoJSON standard allows for them,
because they are an essential aspect of the problem domain. On the other hand, pretty
much any API needs to serve miscellaneous links between its resources, but the Geo‐
JSON standard lacks that capability, presumably because it’s not directly related to the
problem domain. The underlying data format is no help, since JSON defines no hyper‐
media controls at all. That’s why API implementers must resort to hacks like awmc_link.

Enough complaining; what would I do differently? A design more focused on hyper‐
media would allow a list of links, each of which could specify a link relation. GeoJSON
would look a lot more like Collection+JSON or Siren. Then the Ancient World Mapping

GeoJSON: A Troubled Type | 227

www.it-ebooks.info

http://www.it-ebooks.info/

Center wouldn’t need to smuggle awmc_link and pleiades_link into the properties
object.

To link to a coordinate system, you’d use the same kind of link you’d use for anything
else. GeoJSON’s crs would become a link relation, useful in any mapping application,
even one that doesn’t use GeoJSON.

It’s OK to have application-specific hypermedia controls. HTML’s tag is an
application-specific hypermedia control. But you also need to make available a simple,
generic link control.

GeoJSON Has No Media Type
There’s another problem with GeoJSON: it has no registered media type. A GeoJSON
document is served as application/json, just like any other JSON document. How is
a client supposed to distinguish between GeoJSON and plain old JSON?

The best solution is for the server to treat GeoJSON as a profile of JSON. This means
serving a link to the GeoJSON standard with rel="profile". Since JSON on its own
has no hypermedia controls, you’ll need to use the Link header:

Link: <http://www.geojson.org/geojson-spec.html>;rel="profile"

You could also write an ALPS profile or JSON-LD context for GeoJSON, and serve a
link to that using the Link header:

Link: <http://example.com/geojson.jsonld>;↵
rel="http://www.w3.org/ns/json-ld#context"

As far as I know, there’s no GeoJSON implementation that does either of these. GeoJSON
is served as application/json and the client is simply expected to know ahead of time
which resources serve GeoJSON representations and which serve ordinary JSON. A
client that wants to understand different profiles of JSON must run heuristics against
every incoming JSON representation, trying to figure out which profile the server is
giving it.

Does it sound unrealistic that one client would need to handle different profiles of JSON?
Well, consider this. The ArcGIS platform includes an API that presents the same kind
of information as GeoJSON. It serves JSON representations that superficially resemble
GeoJSON’s representations, and it serves them as application/json, with no profile
information.

I don’t think it’s a ludicrous fantasy to imagine a client that can handle both GeoJSON
and ArcGIS JSON. If GeoJSON was served as application/geo+json and ArcGIS JSON
was served as application/vnd.arcgis.api+json, a client developer could split up the
client code based on the value of the Content-Type header, and reunite the code paths
once the incoming data was parsed. If GeoJSON and ArcGIS JSON were consistently

228 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.it-ebooks.info/

served as different profiles, a developer could split up the code based on the value of the
Link header. If they were served with different JSON-LD contexts, a developer could
split up the code based on that.

But both formats are served as though they meant the same thing. A unified client must
try to distinguish between the two formats using poorly defined heuristics. Or, more
likely, the idea of a unified client never occurs to anyone. Like two ships passing in the
night, one developer writes a GeoJSON client for GeoJSON APIs, while another dupli‐
cates much of the first developer’s work, writing an ArcGIS client to run against ArcGIS
installations.

No one is to blame for this. The GeoJSON standard was finalized in 2008. Back then,
our understanding of hypermedia APIs was pretty poor. The GeoJSON designers didn’t
forget to register a media type; they considered it and then tabled the issue.

But it’s not 2008 anymore. We now have standards that add real hypermedia controls
to JSON. We can use profiles to add application-level semantics to generic hypermedia
types. We’ve seen hundreds of one-off, mutually incompatible data formats served as
application/json, and we know we can do better.

Learning from GeoJSON
When a GeoJSON object is included in a hypermedia-capable JSON document (such
as an OData document, which has explicit support for embedded GeoJSON), both of
these problems go away. It doesn’t matter that GeoJSON has no general hypermedia
controls, because it’s embedded in a document that can take care of that stuff. It doesn’t
matter that GeoJSON has no special media type, because it inherits the media type of
the parent document. At this point, GeoJSON becomes a plug-in standard, similar to
OpenSearch.

If you design a domain-specific format that’s not clearly a plug-in for some other format,
you should give it a unique media type. It helps if you also register the media type with
the IANA, but if you use the vnd. prefix, you don’t have to register anything.

Also make sure your format features some kind of general hypermedia control, like
Maze+XML’s <link> tag. You might think it’s not your job to provide a generic hyper‐
media control, since that has nothing to do with your problem domain. But if you don’t
provide a hypermedia control, every one of your users will come up with their own one-
off design, a la awmc_link. You may be able to borrow a simple clip-on hypermedia
control by adopting XLink for XML documents, or JSON-LD for JSON documents.

All in all, it may be better to forget the domain-specific media type, and design a domain-
specific set of application semantics—a profile. Those semantics can then be plugged
in to a general hypermedia type like Siren, or a collection-pattern media type like Col‐
lection+JSON.

GeoJSON: A Troubled Type | 229

www.it-ebooks.info

http://www.it-ebooks.info/

The Semantic Zoo
I’ve shown you the wonders of the hypermedia zoo to demonstrate the diversity and
flexibility of hypermedia-based designs. Now I’m going to take you on a (much quicker)
tour of a different zoo: a series of butterfly gardens full of application semantics for
different problem domains. My goal here is more concrete: to help you save time by
reusing work other people have already done.

In Chapter 9, I played up the benefits of reusing existing application semantics. The
profiles listed here are the result of smart people carefully considering a problem domain
and navigating tricky naming issues. There’s no reason you should have to duplicate
that work. Reusing existing semantics whenever possible also removes the temptation
to expose your server’s implementation details, leaving you free to change those details
without hurting your clients.

Most important of all, when different APIs share the same application semantics, it
becomes possible to write interoperable clients, or general semantics-processing libra‐
ries, instead of a custom client for each individual API. This is more of a hope than a
reality right now, but at least the immediate path forward is clear.

Rather than show you a lot of individual profiles in the semantic zoo, I’ll focus mainly
on the registries that house the profiles.

The IANA Registry of Link Relations
• Media types: any
• Site: this IANA page
• Semantics: general navigation

I’ve talked about the IANA registry of link relations for practically the entire book. It’s
a global registry containing about 60 link relations. You’re allowed to use any IANA-
registered relation in any representation, and to assume that your clients know what
you’re talking about.

Link relations only make it into the IANA registry if they are defined in an open standard
such as an RFC or W3C Recommendation, and are generic enough to be useful for any
media type. Each link relation is given a short human-readable description and a link
to the standard that originally defined it.

In step 3 of Chapter 9’s design procedure, I mention several IANA-registered link rela‐
tions that are especially useful for API design.

The Microformats Wiki
• Media types: HTML (ALPS versions are available for some microformats)

230 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://www.iana.org/assignments/link-relations/
http://www.it-ebooks.info/

• Site: this microformats page
• Semantics: the kind of things a human being might want to search for online

The Microformats project was the first successful attempt at defining profiles for ap‐
plication semantics. Microformats are defined collaboratively, on a wiki and mailing
list. Of the stable microformats, these are the ones you’re most likely to be interested in:
hCalendar

Describes events in time. Based on the plain-text iCalendar format defined in RFC
2445.

hCard
describes people and organizations. Based on the plain-text vCard format (defined
in RFC 2426), and covered in Chapter 7.

XFN
A set of link relations describing relationships between people, ranging from friend
to colleague to sweetheart.

XOXO
Describes outlines. This microformat is interesting because it doesn’t add anything
to HTML at all. It just suggests best practices for using HTML’s existing application
semantics.

These microformat specifications are technically drafts, but most of them haven’t
changed in several years, so I’d say they’re pretty stable:
adr

Physical addresses. This is a subformat of hCard, including only the parts that rep‐
resent addresses. The idea is that if you don’t need all of hCard, you can just use
adr.

geo
Latitude and longitude. (Using the WGS84 standard, naturally!) Another sub-
format of hCard.

hAtom
Blog posts. Based on the Atom feed format (RFC 4287). This is an interesting ex‐
ample of one hypermedia format (HTML) adopting the application semantics of
another (Atom).

hListing
Listings of services for hire, personal ads, and so on. This microformat mostly reuses
semantics from related microformats: hReview, hCard, and hCalendar.

hMedia
Basic metadata about image, video, and audio files.

The Semantic Zoo | 231

www.it-ebooks.info

http://microformats.org/wiki/
http://www.it-ebooks.info/

hNews
An extension of hAtom that adds a few extra descriptors specific to news articles,
like dateline.

hProduct
Product listings.

hRecipe
Recipes.

hResume
Resumes/CVs.

hReview
Describes a review (of anything), with a rating.

There are several interesting microformats I haven’t mentioned because they were ef‐
fectively adopted by HTML 5, and are now IANA-registered link relations: author,
nofollow, tag, and license. The rel-payment microformat also became the IANA-
registered link relation payment.

I’ve created ALPS documents that capture the essential application semantics of most
of the microformats listed here. They are available from the ALPS registry.

Link Relations from the Microformats Wiki
• Media types: HTML
• Site: this microformats page
• Semantics: very, very miscellaneous

The Microformats wiki also has a huge list of link relations defined in standards or seen
in real usage, but not registered with the IANA. This wiki page is the official registry for
link relations used in HTML 5, but it’s also an unofficial registry of all link relations that
aspire to be useful outside a single application. Maze+XML’s link relations would never
cut it with the IANA—they’re too application-specific—but they’re mentioned on the
Microformats wiki.

In Chapter 8, I mentioned this wiki page and gave some examples of the relations defined
there. I don’t recommend simply picking up link relations from this wiki page and using
them. Your clients will have no idea what you’re talking about. The real advantage of
this page is as a way of finding standards you didn’t know about before.

If you were planning on making your own maze game API, and you searched this page
for maze or north, you’d discover Maze+XML. You wouldn’t necessarily end up using

232 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://alps.io
http://microformats.org/wiki/existing-rel-values
http://www.it-ebooks.info/

Maze+XML, but you’d have a glimpse into how someone else had solved a similar
problem.

schema.org
• Medium: HTML5, and RDFa (ALPS versions are available)
• Site: schema home page
• Semantics: the kind of things a human being might want to search for online

As I mentioned in Chapter 8, the main source for microdata items is a clearinghouse
called schema.org. This site takes the application semantics of standards like rNews (for
news) and GoodRelations (for online stores) and ports them to microdata items. In
turn, I’ve automatically generated ALPS documents for schema.org’s microdata items
and made them available from alps.io.

There are hundreds of microdata items described on schema.org, and more are on the
way as the schema.org maintainers work with the creators of other standards to repre‐
sent those standards in microdata. Rather than talk about all of the microdata items, I’ll
list the current top-level items and mention some of their notable subclasses:

• CreativeWork (including Article, Blog, Book, Comment, MusicRecording, Soft‐
wareApplication, TVSeries, and WebPage)

• Event (including BusinessEvent, Festival, and UserInteraction)
• Intangible is sort of a catch-all category, which notably includes Audience, Brand,

GeoCoordinates, JobPosting, Language, Offer, and Quantity
• MedicalEntity (including MedicalCondition, MedicalTest, and AnatomicalStruc‐

ture)
• Organization (including Corporation, NGO, and SportsTeam)
• Person
• Place (including City, Mountain, and TouristAttraction)
• Product (including ProductModel)

As you can see, there’s a lot of overlap between schema.org microdata items and the
microformats. The Person item covers the same ground as the hCard microformat. The
Event item is similar to hEvent, Article to hAtom, NewsArticle to hNews, Recipe to
hRecipe, GeoCoordinates to geo, and so on.

A word of caution: the schema.org microdata items are very consumer-focused. A
Product is something the client can buy, not a project the client is working on. The
semantics of the Restaurant item have a lot to do with eating at a restaurant, and almost
nothing to do with running one or inspecting one. There’s a SoftwareApplication item,

The Semantic Zoo | 233

www.it-ebooks.info

http://schema.org/
http://www.it-ebooks.info/

but nothing for a bug, a unit test, a version control repository, a release milestone, or
any of the other things we deal with when we develop software. To my eyes, the only
item described in enough detail to be useful to a practitioner is MedicalEntity, and a
doctor would probably disagree with me on that.

In short, the schema.org project has a definite point of view. It’s not encyclopedic, and
even if it defines an item that overlaps with your API’s domain, the application semantics
it defines may have nothing to do with how you look at things.

Dublin Core
• Medium: HTML, XML, RDF, or plain text
• Site: Dublin Core home page
• Semantics: published works

The Dublin Core is the original standard for defining application semantics, dating all
the way back to 1995. It defines 15 bits of semantics for information about published
works: title, creator, description, and so on. These bits of semantics can be used
either as semantic descriptors or as link relations.

The Dublin Core Metadata Initiative has also defined a more complete profile, the
DCMI Metadata Terms. This profile includes semantic descriptors like dateCopyrigh
ted, as well as link relations like isPartOf and replaces.

Activity Streams
• Medium: Atom, JSON
• Site: Activity Streams home page
• Families: things human beings do online

Activity Streams is a corporate standard for representing our online lives as a sequence
of discrete “activities.” Each activity has an actor (usually a human being who’s using a
computer), a verb (something the actor is doing), and an object (the thing to which the
actor is doing the verb).

When you watch a video online, that’s an activity. You are the actor, the video is the
object, and the verb (according to Activity Streams) is the literal string “play.” Some
activities have a target as well as an object. When I publish a new entry to my blog, I am
the actor, the blog entry is the object, the verb is “post,” and the target is my blog.

I’ve put Activity Streams in this section, even though it’s a data format, because the data
format doesn’t define any hypermedia controls. But there are a lot of really useful se‐
mantics in here. Activity Streams defines names and semantic descriptors for a lot of

234 | Chapter 10: The Hypermedia Zoo

www.it-ebooks.info

http://dublincore.org/
http://activitystrea.ms/
http://www.it-ebooks.info/

10. The Internet-Draft “draft-snell-activity-streams-type” will solve the second problem. It registers the media
type application/stream+json for Activity Streams documents.

the things we interact with online (Article, Event, Group, Person). More important, it
defines a lot of useful names for verbs (join, rsvp-yes, follow, cancel), which make
sense as the names of unsafe state transitions.

The Activity Streams standard explains how to represent a sequence of activities as an
Atom feed. Use this and Activity Streams will be a real hypermedia format, an extension
to Atom.

There’s also a standalone JSON-based version of Activity Streams. It has the same prob‐
lems as GeoJSON: there are no hypermedia controls, and no way to distinguish Activity
Streams documents from plain JSON documents.10 To add hypermedia controls to a
JSON Activity Streams document, you’ll need to use JSON-LD or Hydra (Chapter 12).

There’s a lot of overlap between Activity Streams’ semantics and schema.org’s microdata
items. There are microdata items called Article, Event, Group, and Person. The User‐
Checkins microdata item is like Activity Streams’ “checkin” verb, UserLikes is like “like,”
and UserPlays is like “play.” (For the record, Activity Streams predates schema.org.)

The ALPS Registry
I’ve set up a registry of ALPS profiles at this page for general reuse. As part of my work
to liberate application semantics from their media types, I’ve created ALPS versions of
the schema.org metadata items, several microformats, and the Dublin Core. That’s just
a start; hopefully by the time you read this I’ll have made ALPS profiles that convey the
application semantics of other standards as well.

If you want to use an ALPS profile to define your API’s application semantics, you can
search alps.io to find a profile that works for you, or assemble a new profile out of bits
of existing profiles.

If you decide to use an ALPS profile in your API, feel free to reference bits of the profiles
in the ALPS Registry. Once you’re done, I’d appreciate it if you’d upload the profile to
the ALPS Registry (as well as hosting it locally as part of your API). That way other
people can find and reuse your application semantics.

The Semantic Zoo | 235

www.it-ebooks.info

http://alps.io/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

